НЕТ НЕ ВЕРНО
|a + b| ≤ |a| + |b| это ВЕРНО
Существует 4 варианта знаков + и - для чисел a и b
1 вариант
Если a > 0 и b > 0
их модули совпадают с их значениями: |a| = a, |b| = b
Из этого следует, что |a + b| = |a| + |b|
2 вариант
Если a < 0 и b > 0
выражение |a + b| можно записать как |b – a|
А выражение |a| + |b| равно сумме абсолютных значений a и b, что больше, чем |b – a|
3 вариант (похож на 2 вариант)
Если a > 0 и b < 0 |a + b|
выражение |a + b| принимает вид |a – b|
А выражение |a| + |b| равно сумме абсолютных значений a и b что также больше чем |a - b|
Поэтому |a + b| < |a| + |b|
4 вариант
Если a < 0 и b < 0
тогда |a + b| = |–a – b| = |-(a + b)|
Но в варианте 1 доказано, что |a + b| = |a| + |b|, следовательно и |–a – b| = |a| + |b|
значит |a + b| ≤ |a| + |b| в зависимости от знаков a и b
а вот |ab| = |a|*|b|
Объяснение:
1) b1 -b3 = 9
b2 - b4 = 19
b1q - b3q = 19
q(b1 - b3) = 19
q*9 = 19
q = 19/9
b1 - b1q^2 = 9
b1 = 9/(1 - q^2) = 9/(81- 361)/81 = -729/280
b2 = b1q = -729*19/(280*9) = - 1539/280
b3 = b2q = - 1539*19/(280*9) = - 3249/280
b4 = b3q = - 3249*19/(280*9) = -6859/280
2) a4q^2 - a2q^2 = -45/512
q^2 * (a4 - a2) = -45/512
q^2 * (-45/32) = -45/512
q^2 = 1/16
q1 = 1/4
q2 = - 1/4
При q1 = 1/4
a1q^3 - a1q = -45/32
a1 = -45/(32 * (q^3 - q)) = - 45/(32 * (1 - 16)/64) = 6
При q2 = -1/4
a1q^3 - a1q = -45/32
a1 = -45/(32 * (q^3 - q)) = - 45/(32 * (-1 + 16)/64) = - 6
4x²-31=0
4x²=31
x²=31\4
x=+-√31\4
x=-√31\4
x=√31\4