Задания суммативного оценивания за 2 четверть по предмету «Алгебра» Вариант 1
Задание 1. Преобразуйте уравнение (х+3)^2 – 3x = 2х(х – 3) к виду ах^2 + bx + c = 0 и укажите старший коэффициент, второй коэффициент и свободный член.
Задание 2. Определите, какое из приведенных ниже уравнений является неполным квадратным уравнением: А) 7х^2 + 6 = -6х Б) 5х^2 = 4 В) 5t +6= — 8t^2 Г) у^2 + бу — 5 = 0.
Задание 3. Дано квадратное уравнение 2х^2 + 4х + c = 0. а) При каких значениях параметра с данное уравнение имеет два одинаковых действительных корня? b) Найдите эти корни уравнения.
Задание 5. Для квадратного трехчлена х^2 – 10x + 21 а) выделите полный квадрат; b) разложите квадратный трехчлен на множители.
Задание 6. Дано уравнение
"УРАВНЕНИЕ НА ФОТО"
а) Укажите область допустимых значений уравнения; b) Приведите рациональное уравнение к квадратному уравнению; c) Найдите решения рационального уравнения.
А) Да, например, можно стереть пары 2-10, 4-5, 6-9, 7-11. Останутся два числа: 3 и 8, сумма которых равна 11.
б) Нет. Заметим, что стирать можно пары, в которых одно число даёт остаток 1 при делении на 3, а другое — остаток 2 при делении на 3 (пары первого типа), или пары чисел, делящихся на 3 (пары второго типа). В исходной последовательности 18 чисел с остатком 1, 17 с остатком 2 и 17 делящихся на 3. Тогда, чтобы осталось два числа, надо стереть 17 пар первого типа и 8 пар второго типа, останется одночисло, дающее остаток 1 при делении на 3, и одно число, делящееся на 4. Их разность не может делиться на 3.
в) Мы знаем остатки чисел, которые должны остаться. Максимальное чистное будет, если будем делить максимальное число с остатком 1 на минимальное с остатком 0 или максимальное с остатком 0 на минимальное с остатком 1. Посмотрим, что из этого больше. Макс(0) = 150, мин(0) = 102; макс(1) = 151, мин(1) = 100. 150/100 = 1,5; 151/102 = 1,48... < 1.5. Значит, чтобы частное было максимальным, нужно оставить числа 150 и 100.
Вот как это сделать: стираем пары вида (6n, 6n + 3) для n от 17 до 24 и пары вида (3n + 2, 3n + 4) для n от 33 до 49
||2^x+x-2|-1| > 2^x-x-1 Раскрывать модули будем постепенно, снаружи, как будто снимая листья с кочана капусты))) Помним о важном правиле: |x| =x, если x>=0 |x|=-x, если x<0
Снимаем первый модуль и действуем согласно вышеупомянутому правилу: {|2^x+x-2|-1 >2^x-x-1 {|2^x+x-2|-1> -2^x+x+1 Переносим "-1" из левой части в правую: {|2^x+x-2| > 2^x-x {|2^x+x-2| > -2^x+x+2
2) Снимаем второй модуль и также действуем согласно модульному правилу: {2^x+x-2>2^x-x {2x-2>0 {2^x+x-2>x-2^x {2*2^x-2>0 {2^x+x-2>-2^x+x+2 {2*2^x-4>0 {2^x+x-2>2^x-x-2 {2x>0
{x>1 {x>1 {2^x>1 {x>0 {2^x>2 {x>1 {x>0 {x>0
Решением неравенства является промежуток (1; + беск.)
б) Нет. Заметим, что стирать можно пары, в которых одно число даёт остаток 1 при делении на 3, а другое — остаток 2 при делении на 3 (пары первого типа), или пары чисел, делящихся на 3 (пары второго типа). В исходной последовательности 18 чисел с остатком 1, 17 с остатком 2 и 17 делящихся на 3. Тогда, чтобы осталось два числа, надо стереть 17 пар первого типа и 8 пар второго типа, останется одночисло, дающее остаток 1 при делении на 3, и одно число, делящееся на 4. Их разность не может делиться на 3.
в) Мы знаем остатки чисел, которые должны остаться. Максимальное чистное будет, если будем делить максимальное число с остатком 1 на минимальное с остатком 0 или максимальное с остатком 0 на минимальное с остатком 1. Посмотрим, что из этого больше.
Макс(0) = 150, мин(0) = 102; макс(1) = 151, мин(1) = 100. 150/100 = 1,5; 151/102 = 1,48... < 1.5. Значит, чтобы частное было максимальным, нужно оставить числа 150 и 100.
Вот как это сделать: стираем пары вида (6n, 6n + 3) для n от 17 до 24 и пары вида (3n + 2, 3n + 4) для n от 33 до 49
ответ. а) да, б) нет, в) 1,5.