М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
snaiperkiling
snaiperkiling
11.12.2021 19:32 •  Алгебра

решить
6cos^2*731 + 6sin^2*349

👇
Ответ:
Для решения этого уравнения, мы можем использовать тригонометрическое тождество, которое гласит:

cos^2(x) + sin^2(x) = 1

Сначала мы заменим cos^2(731) на 1 - sin^2(731), и sin^2(349) на 1 - cos^2(349), и подставим эти значения обратно в исходное уравнение.

6(cos^2(731)) + 6(sin^2(349)) = 6(1 - sin^2(731)) + 6(1 - cos^2(349))

Раскроем скобки:

6 - 6sin^2(731) + 6 - 6cos^2(349)

Сгруппируем подобные члены:

12 - 6sin^2(731) - 6cos^2(349)

Теперь мы можем заменить sin^2(731) на 1 - cos^2(731) и cos^2(349) на 1 - sin^2(349):

12 - 6(1 - cos^2(731)) - 6(1 - sin^2(349))

Раскроем скобки:

12 - 6 + 6cos^2(731) - 6 + 6sin^2(349)

Опять сгруппируем подобные члены:

-6 + 6cos^2(731) + 6sin^2(349)

Заменим cos^2(731) на (1 - sin^2(731)) и sin^2(349) на (1 - cos^2(349)):

-6 + 6(1 - sin^2(731)) + 6(1 - cos^2(349))

Раскроем скобки:

-6 + 6 - 6sin^2(731) + 6 - 6cos^2(349)

Сгруппируем подобные члены:

6 - 6sin^2(731) - 6cos^2(349)

Мы видим, что ответ равен начальному выражению 6cos^2(731) + 6sin^2(349), которое мы хотели решить. Для этого используется тригонометрическое тождество cos^2(x) + sin^2(x) = 1, которое позволяет упростить выражение и получить равенство 1.
4,6(14 оценок)
Проверить ответ в нейросети
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ