1) Найдем нулю нашей функции. Для чего разложим на множители формулу, которой она задана, с введения новых вс членов.
Из следует:
а) , отсюда
- нуль функции
б) ,
, отсюда
,
- нули функции
Итак, функция обращается в нуль в точках
,
и
2) Найдем возможные точки экстремума нашей функции. Для чего найдем производную функции :
-----(1)
Разложим квадратный трехчлен, стоящий в правой части (1), на целые множители. Для чего найдем дискриминант этого квадратного трехчлена:
, отсюда найдем корни:
---------(2)
Тогда с (2) выражение (1) примет вид метода интервалов найдем промежутки, на которых производная функции принимает положительные и отрицательные значения:
а) при x принадлежащем объединению промежутков
(-бесконечности; 1/3)U(5; +бесконечности )
б) при x принадлежащем промежутку (1/3; 5)
Известно, что промежутки, на которых производная функции положительна, являются промежутками возрастания функции!
На промежутках, где , функция убывает!
Поскольку при переходе через точку x=1/3 производная меняет знак с плюса на минус, то эта точка - точка максимума
Поскольку при переходе через точку x=5 производная меняет знак с минуса на плюс, то эта точка - точка минимума. Итак,
1) x^6-y^3=(x^2)^3-y^3=(x^2-y)((x^2)^2+x^2y+y^2)=(x^2-y)((x^4+x^2y+y^2)
2) (a-1)^3-(2a-9)^3=((a-1)-(2a-9))((a-1)^2+(a-1)(2a-9)+(2a-9)^2)=(a-1-2a+9)(a^2-2a+1+2a^2-9a-2a+9+4a^2-36a+81)=(-a+8)(7a^2-49a+91)=7(-a+8)(a^2-7a+13)