1)Рассм. прямоугольный треуг-к АВD, образованный одной из диагоналей и 2 сторонами прямоугольника(а - первая сторона, b - вторая сторона). Тогда по теореме пифагора квадрат гипотенузы равен сумме квадратов катетов:
45^2 = a^2 + b^2
Площадь прямоугольника - это произведение сторон а и b:
a * b = 972
a^2 + b^2 можно представить как полный квадрат:
(a + b)^2 - 2ab = a^2 + b^2 (a^2 + b^2 + 2ab) - 2ab = a^2 + b^2
2)Теперь вместо ab подставляем 972, вместо a^2 + b^2 - 45^2 (или 2025)
(a + b)^2 - 1944 = 2025
(a + b)^2 = 3989
a + b = кв. корень 3969 = 63
3)Теперь решим систему нера-в:
a + b = 63
a * b = 972, выражаем а через 1-ое урав-е и подставляем во второе:
a = 63 - b
(63 - b) * b = 972
a = 63 - b
63b - b^2 - 972 = 0
a = 63 - b
(b - 27) * (b - 36) = 0 , (следовательно 27 и 36 - корни кв. урав-я),
а = 36 a = 27
b = 27, b = 36, следовательно
27 см и 36 см - длины сторон прямоугольника.
ответ: 27 и 36
2)D=36+160=196
x1=(6+14)/2=10; x2=(6-14)/2=-4
cosx+sinx=0
умножу все на √2/2
√2/2*cosx+√2/2*sinx=0
sin(pi/4+x)=0
pi/4+x=pin
x=-pi/4+pin (n∈Z)
лишние корни могут появиться только в левом трехчлене, они могут нарушить ОДЗ подкоренного выражения, которое должно быть неотрицательным. Подставлю их и проверю это...
x1=10, вспомним. что pi=3.14, значит 10=3pi+0.58 примерно, это четвертая координатная четверть, там и синус и косинус отрицательные, значит подкоренное выражение отрицательно, что недопустимо. Поэтому x1=10 не подходит
x2=-4=-pi-0.86-вторая координатная четверть. там синус положителен, косинус отрицателен . Причем . суды по значению , х2 находится в интервале между pi/2 и pi/2+pi/4-где значение синуса превосходит по модулю значение косинуса. поэтому подкоренное выражение будет положительно.
ответ x={-4; -pi/4+pn;n∈Z}