3.По Виету х=4; х=-1/2; (х-4)(х+1/2)≤0
-1/24
+ - +
х∈[-1/2;4] Целые 0; 1;2;3;4.
4. х<1/7
2(x-1)(x+1/2)≤0
___-1/21
+ - +
пересечением множеств
(-∞;1/7)∩[-1/2;1]=[-1/2;1/7)
5. неравенство равносильно системе
х²(3-х)(х-4)²≤0
х≠4
034
+ + - -
x∈[-3;4)∪(4;+∞)∪{0}
6. найдем пересечение решений неравенств решением первого служит х∈(-∞;+∞), т.к. дискриминант меньше нуля. он равен 9-16=7, решением второго (х-4)*(х+4)≤0
-44
+ - +
х∈[-4;4] есть х∈[-4;4]
3.По Виету х=4; х=-1/2; (х-4)(х+1/2)≤0
-1/24
+ - +
х∈[-1/2;4] Целые 0; 1;2;3;4.
4. х<1/7
2(x-1)(x+1/2)≤0
___-1/21
+ - +
пересечением множеств
(-∞;1/7)∩[-1/2;1]=[-1/2;1/7)
5. неравенство равносильно системе
х²(3-х)(х-4)²≤0
х≠4
034
+ + - -
x∈[-3;4)∪(4;+∞)∪{0}
6. найдем пересечение решений неравенств решением первого служит х∈(-∞;+∞), т.к. дискриминант меньше нуля. он равен 9-16=7, решением второго (х-4)*(х+4)≤0
-44
+ - +
х∈[-4;4] есть х∈[-4;4]
1) Если абсцисса такой точки - х0, а ордината у0, такие что х0 = -у0, причем точка принадлежит графику у = х^2 => у0 = х0^2 (-y0 = -x0^2), но при этом -y0 = x0, отсюда x0 = -x0^2 или
x0^2 + x0 = 0
x0 * (x0 + 1) = 0
x0 = 0 или x0 = -1
При x0 = 0: y0 = 0 Что нам не подходит
При x0 = -1 y0 = 1 ответ: (-1, 1)
2) Совершенно аналогично x0 = y0 и y0 = x0^2 Откуда
x0 ^ 2 = x0
x0^2 - x0 = 0;
x0(x0 - 1) = 0;
x0 = 0 или x0 = 1
При x0 = 0 y0 = 0
При x0 = 1 y0 =1
ответ: (0, 0), (1, 1)