A2. Найдите значение выражения 2 – tg2x · cos2 x,если sin х = 0,2
1) 1,2 2) 1,96 3) 1,04 4) 1,6
А3. У выражение sin2α ·cos4α - sin6α + sin4α · cos2α
1) sin2α - sin6α 2) -2sin6α 3) 0 4)cos2α – sin6α
А4. Найдите значение выражения √2 · sin22,5 ۫ · cos22,5 ۫
1) 1 2) √2 3) √2/2 4) 0,5
А5. У выражение sin(α – β) + 2 cosα · sinβ
1) cos(α + β) 2) cos(α – β) 3) sin(α + β) 4) sin(α – β)
Объяснение найти правильный ответ
A2. Найдите значение выражения 2 – tg2x · cos2 x,если sin х = 0,2
1) 1,2 2) 1,96 3) 1,04 4) 1,6
А3. У выражение sin2α ·cos4α - sin6α + sin4α · cos2α
1) sin2α - sin6α 2) -2sin6α 3) 0 4)cos2α – sin6α
А4. Найдите значение выражения √2 · sin22,5 ۫ · cos22,5 ۫
1) 1 2) √2 3) √2/2 4) 0,5
А5. У выражение sin(α – β) + 2 cosα · sinβ
1) cos(α + β) 2) cos(α – β) 3) sin(α + β) 4) sin(α – β)
1.
√3 + tg15° = √3 + tg(45°-30°) = √3 + tg45° - tg30°/1 + tg45°×tg30° = √3 + 1 - √3/3 / 1 + 1×√3/3 = √3 + 1 - √3/3 / 1 + √3/3 = √3 + 3-√3/3 / 3+√3/3 = √3 + 3-√3/3+√3 = √3 + (3 - √3)×(3 - √3)/6 = √3 + (3 - √3)²/6 = √3 + 9 - 6√3 + 3/6 = √3 + 12-6√3/6 = √3 + 6(2-√3)/6 = √3+2-√3 = 2
ответ: d) 2
2.
8sin15° × cos15° + √3 × tg60° = 4sin30° + √3 × √3 = 4×1/2 + (√3)² = 2+3 = 5
ответ: c) 5
3.
а) tg225° + sin30° = tg(180°+45°) + 1/2 = tg45° + 1/2 = 1 + 1/2 = 3/2 = 1,5
б) √2 × cos315° = √2 × cos(360°-45°) = √2 × cos(-45°) = √2 × cos45° = √2 × √2/2 = (√2)²/2 = 2/2 = 1
ответ: а) 1,5 б) 1