У нас 3 модуля
|1| |2| |3|
Нужно пассмотреть все варианты рещеений если |a| = 1) a
2) -a
какие будут варианты
1) |1|=1 |2|=2 |3|=3 корень 1 = 18
2) |1|=1 |2|=2 |3|=-3 2 комплексных корня
3) |1|=1 |2|=-2 |3|=3 корень -54/41
4) |1|=1 |2|=-2 |3|=-3 2 комплексных корня
4) |1|=-1 |2|=2 |3|=3 корень 80/11
6) |1|=-1 |2|=2 |3|=-3 2 комплексных корня
7) |1|=-1 |2|=-2 |3|=3 корень -80/33
8) |1|=-1 |2|=-2 |3|=-3 2 комплексных корня
у НАС ВСЯ числовая прямая разбита на 4 отрезка
(-oo; 0] [0; 3.25] [3.25; 6] [6; +oo]
Первый отрезек соответствует 8) варианту
Второй отрезек соответствует 6) варианту
Третий отрезек соответствует 2) варианту
Четвертый отрезек соответствует 1) варианту
Следовательно мы имеет всего 1 действительный корень = 18
Уравнение параболы y=ax^2+bx+c
Так как парабола проходит через точку А(8;-2), то
-2=64а+8b+c (1)
Координаты вершины параболы (2;4), через неё парабола тоже, логично, проходит, поэтому
4=4а+2b+c (2)
А также абсцисса вершины параболы определяется по формуле
x=-b/2a => 2=-b/2a, 4a=-b,
4a+b=0 (3)
Работаем с выражениями (1), (2) и (3):
(1-2) -6=60а+6b; 36a+6*(4a+b)=-6;
Т.к. 4a-b=0, то 36a=-6; a=-1/6
(3) 4a=-b; 2/3=b
Подставляем найденные значения а и b в выражение (2)
4=-4/6 + 4/6 + с, с=4
Поэтому искомое уравнение параболы
ответ: - 1/6 x^2 + 2/3 x + 4
Объяснение:
A) (5+x)^2=x^2+10x+25
B) (1-3x)^2=9x^2-6x+1
C) (3a+7b)^2=9a^2+42ab+49b^2
D) (x^2+4)^2=x^4+8x^2+16