М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
moonlight121
moonlight121
24.03.2020 00:17 •  Алгебра

Які з чисел 123;-45;2,45;-4;0;56,1;-0,554 є цілими недодатними?

👇
Открыть все ответы
Ответ:
Karbobo
Karbobo
24.03.2020

Основная теорема алгебры. Уравнение n-го степеня имеет n корней. Иными словами: каков старший степень - столько и корней (действительные и комплексные)


Решим к примеру x^7=x+6 уравнение в действительных корнях.

Рассмотрим функцию y=x^7. Эта функция является возрастающей на всей числовой прямой.

Также рассмотрим правую часть уравнения: функцию y=x+6. Графиком линейной функции является прямой, проходящей через точки (0;6), (-6;0).


графики пересекаются в одной точке, следовательно, уравнение имеет один действительный корень и 6 комплексно-сопряженные корни.


Возьмем теперь к примеру уравнение ax^2+bx+c=0,~~ a\ne0

D=b^2-4ac

Если D>0, то квадратное уравнение имеет два ДЕЙСТВИТЕЛЬНЫХ корня.

Если D=0, то квадратное уравнение имеет два равные корни.

Если D<0, то квадратное уравнение действительных корня не имеет, но имеет два комплексно сопряженных корня.


Как узнать, сколько корней имеет уравнение? к примеру x^7=x+6
4,4(46 оценок)
Ответ:
nastunacka89
nastunacka89
24.03.2020
\sqrt{x+3} \geq x+3
Решение
Чтобы избавиться от знака корня, возведем обе части во вторую степень и получим слева просто x+3, а справа сокращенное умножение квадрата суммы:
x+3 \geq (x+3)^2
x+3 \geq x^2+6x+9
Приведем подобные члены и вычислим квадратное уравнение, приравняв результат к нулю:
-x^2-5x-6 \geq0
-x^2-5x-6=0
График функции - парабола. Ветви вниз, так как коэффициент при x^2.
D=b^2-4ac
D=(-5)^2-4*(-1)*(-6)=25-24=1
Найдем корни квадратного уравнения:
x_{1,2}= \frac{-bб \sqrt{D} }{2a}
x_{1}= \frac{-(-5)+1}{2*(-1)} =- \frac{6}{2} =-3
x_{2}= \frac{-(-5)-1}{2*(-1)} =- \frac{4}{2} =-2
Корни квадратного уравнения - точки пересечения с осью X.
Так как условие неравенства \geq - больше или равно, то интервал включает в себя значения корней уравнения.
ответ: а) [-3;-2]

Множеством решений неравенство корень x+3 больше или равно x+3 является: а)[-3; -2] б) [-3; +бесконе
4,8(94 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ