См. рисунок
1. Правильный шестиугольник, состоит из шести равносторонних треугольников.
Найдем сторону шестиугольника AB=r=48/6=8м.
Рассмотрим ΔСDO в нем CD=DO=0,5a (где а - сторона квадрата) ⇒ a=2CD
По теореме Пифагора найдем СD
r²=CD²+DO²=2CD² ⇒ r=CD√2⇒ м
м
2. Из задачи №1. мы убедились, что радиус описанной окружности равен стороне правильного шестиугольника.
Площадь правильного шестиугольника равна
⇒
см
Длина окружности равна L=2πr=2π4√3=π*8√3≈43,5 см
3. Площадь сектора равна
≈151 см²
(где n - градусная мера дуги сектора)
( - A - 3B)^2 - ( A + 3B)*( 3B + A) = - ( A^2 + 6AB + B^2) - ( A^2 + 9B^2) =
= - A^2 - 6AB - B^2 - A^2 - 9B^2 = - 2A^2 - 6AB - 10B^2
C^4 - 27C = C * ( C^3 - 27) = C * ( C - 3 ) * ( C^2 + 3C + 9)
25 - C^2 = ( 5 - C ) * ( 5 + C )
Y = 2X - 2
Графиком является прямая линия. Для построения достаточны две точки
Точка С ( 0 ; - 2 ) и B ( 1 ; 0 ) Соединяем указанные точки. Это и есть график функции Y = 2X - 2
Проходит ли точка А ( - 10 ; - 20 ) через данный график?
Y = 2X - 2
- 20 ≠ 2 * ( - 10) - 2
- 20 ≠ - 22
Равенство неверное, поэтому данная точка не проходит через указанный график