Так как π=180°, то 1800°=10π, то есть sin(1800°+45°)=sin(10π+45°)
Дальше есть несколько путей нахождения необходимого значения. Во-первых, период синуса - 2π, то есть sin(2π+x)=sin(x), тогда sin(10π+45°)=sin(45°)=√2/2
Во-вторых, можно раскрыть по формуле синуса суммы:
В-третьих, можно узнать значение функции с формул приведения. Так как аргумент отсчитывается от горизонтальной оси, смены функции на кофункцию (косинус) не будет; изначальная функция положительна (I четверть на тригонометрической окружности), поэтому знак будет тоже "+".
Нарисуем табличку и пусть x грузоподъемность нашей машины тоннаж рейсы 1я машина x + 3 80/(x+3) 2я машина x 80/x т.к. 2я машина сделала на 6 рейсов больше, то отбольшего отнимем меньшее (80/x) - ( 80/(x+3) ) = 6 решаем уравнение умножив на x*(x+3) чтоб избавится от дробей 80(x+3) - 80x = 6*x*(x+3) откроем скобки и решим квадратное уравнение 6*x² + 18x - 240 = 0 или x² + 3x - 40 = 0 устно по теореме Виета находим корни -8 и 5 имеет смысл только корень 5, значит у 2ой машины грузоподъемность 5
1) Найдем такие значения х, при которых выражение под знаком модуля равно 0 х+2=0, х=-2 х-3=0, х=3
2) Нанесем на числовую прямую эти числа и рассмотрим промежутки (смотри вложение)
3) На промежутке [3;+∞) выражения под обеими модулями положительные. Модуль положительного числа равен этому же числу. Раскроем знак модуля х+2+х-3=10,
{2х-1=10 {х≥3
{2х=11 {х≥3
{х=5,5 {х≥3
Число 5,5 принадлежит указанному промежутку, значит, это первый корень
4) На промежутке (-2;3) выражение под первым модулем положительное, а под вторым — отрицательное. Модуль отрицательного числа равен противоположному числу. Раскроем знак модуля х+2-х+3=10
{0х+5=10 {-2<х<3
{0х=5 {-2<х<3
Это уравнение не имеет действительных корней
5) На промежутке (-∞;-2] выражения под обеими модулями отрицательные. Раскроем знак модуля -х-2-х+3=10
{-2х+1=10 {х≤-2
{-2х=9 {х≤-2
{х=-4,5 {х≤-2
Число -4,5 принадлежит указанному промежутку, значит, это второй корень
Объяснение:
sin1845° можно представить как sin(1800°+45°)
Так как π=180°, то 1800°=10π, то есть sin(1800°+45°)=sin(10π+45°)
Дальше есть несколько путей нахождения необходимого значения. Во-первых, период синуса - 2π, то есть sin(2π+x)=sin(x), тогда sin(10π+45°)=sin(45°)=√2/2
Во-вторых, можно раскрыть по формуле синуса суммы:
sin(a+b)=sin(a)cos(b)+cos(a)sin(b)
sin(10π+45°)=sin(10π)cos(45°)+cos(10π)sin(45°)=0*√2/2+1*√2/2=√2/2
В-третьих, можно узнать значение функции с формул приведения. Так как аргумент отсчитывается от горизонтальной оси, смены функции на кофункцию (косинус) не будет; изначальная функция положительна (I четверть на тригонометрической окружности), поэтому знак будет тоже "+".