Рассмотрим первое уравнение:
Дробь равна нулю, когда числитель равен нулю (то есть каждый множитель может быть равным нулю), а знаменатель не равен нулю:
Ограничение на x взялось из-за корней. Теперь достаточно построить каждый график совокупности в заданных пределах.
Второе уравнение представляет собой прямую, смещённую по оси Oy.
На рисунке красным цветом начерчен график первого уравнения, зелёным — вариации второго. По рисунку видно, что система имеет два решения, если прямая проходит через точку (-2; -4) (не включая такое значение a) и так пробегает до точки (-2; 3), проходит через точку (5; 3), проходит через точку (6; 3) и так пробегает до точки (6; 4) (не включая).
Найдём ключевые значения параметра:
В точке (-2; -4): -2-4-a = 0 ⇔ a = -6;В точке (-2; 3): -2+3-a = 0 ⇔ a = 1;В точке (5; 3): 5+3-a = 0 ⇔ a = 8;В точке (6; 3): 6+3-a = 0 ⇔ a = 9;В точке (6; 4): 6+4-a = 0 ⇔ a = 10.Учитывая рассуждения, получаем ответ.
ответ:
при у=3
Объяснение:
(8у+3)/(5у-6)=3
Приводим к общему знаменателю 5у-6, получаем уравнение вида:
8у+3=3(5у-6)
8у+3=15у-18, 18+3 = 15у-8у, 21=7у, у=21/7, у=3.