1) log₃(x+6)+2log₃(x-3)-3log₃(x-1)=0; ОДЗ: х+6>0 x-3>0 x-1>0 ОДЗ: х>3 Применяем свойства логарифмов. Логарифм степени, логарифм произведения, логарифм частного. log₃(x+6)·(x-3)²/(x-1)³=0; По определению логарифма (x+6)(x-3)²/(x-1)³=3⁰; 3⁰=1 (x+6)(x-3)²=(x-1)³; x³-27x+54=x³-3x²+3x-1; 3x²-30x+55=0 D=900-4·3·55=240 х=(30-4√15)/6 <3 не удовл ОДЗ или х=(30+4√15)/6=5+(2√15/3).
2) Даны векторы a(3;-2;2) и b(-5;6;y). Вектор (a+b) имеет координаты (a+b)(-2;4;2+y) Если векторы взаимно перпендикулярны, то скалярное произведение векторов равно 0. Скалярное произведение векторов, заданных своими координатами равно сумме произведений одноименных координат. -2·3+4·(-2)+(2+у)·2=0; -6-8+4+4у=0; 4у=10 у=2,5 3) 20sin²a + 3sina - 2 = 0 - квадратное уравнение. D=9-4·20·(-2)=169 sina=(-3-13)/40=-16/40=-4/10 или sina=(-3+13)/40=10/40=1/4 a ∈ (0; П/2) значит sina>0 sina= (-4/10) не удовлетворяет этому условию. sina=1/4⇒ cosα=√(1-sin²a)=√(1-(1/16))=(√15)/4 sin2a=2sina·cosa=2·(1/4)·(√15)/4=(√15)/8.
на первом участке средняя скорость=56,5 км/ч
на втором - еще больше (56,5 +8.2) =64,7 км/ч
даже если средняя скорость на всем расстоянии будет =56,5 км/ч
за 10,5 ч автомобиль пройдет 10.5*56,5 =593,25 км > 368,35км
вывод была остановка между участками
обозначим пройденное расстояние
на первом участке x
на втором 368,35-x
составим пропорцию
v1 /v2 = x / (368,35-x)
56,5 / 64,7 = x / (368,35-x)
56,5 * (368,35-x) = 64,7 * x
умножаем,вычитаем, находим х
х = 171.714 км - первый участок со скоростью =56,5 км/ч
368,35 - х = 196,636 км - первый участок со скоростью =56,5+8.2 км/ч
ОТВЕТ 171.714 км ; 196,636 км