Свойства функции y=x3y=x3
Давайте опишем свойства данной функции:
1. x – независимая переменная, y – зависимая переменная.
2. Область определения: очевидно, что для любого значения аргумента (x) можно вычислить значение функции (y). Соответственно, область определения данной функции – вся числовая прямая.
3. Область значений: y может быть любым. Соответственно, область значений – также вся числовая прямая.
4. Если x= 0, то и y= 0.
График функции y=x3y=x3
1. Составим таблицу значений:

2. Для положительных значений x график функции y=x3y=x3 очень похож на параболу, ветви которой более "прижаты" к оси OY.
3. Поскольку для отрицательных значений x функция y=x3y=x3 имеет противоположные значения, то график функции симметричен относительно начала координат.
Теперь отметим точки на координатной плоскости и построим график (см. рис. 1).

Эта кривая называется кубической параболой.
Примеры
I. На небольшом корабле полностью закончилась пресная вода. Необходимо привезти достаточное количество воды из города. Вода заказывается заранее и оплачивается за полный куб, даже если залить её чуть меньше. Сколько кубов надо заказать, что бы не переплачивать за лишний куб и полностью заполнить цистерну? Известно, что цистерна имеет одинаковые длину, ширину и высоту, которые равны 1,5 м. Решим эту задачу, не выполняя вычислений.
1. Построим график функции y=x3y=x3.
2. Найдем точку А, координата x, которой равна 1,5. Мы видим, что координата функции находится между значениями 3 и 4 (см. рис. 2). Значит надо заказать 4 куба.

II. Построить график функции y=x3+1y=x3+1.
1. Составим таблицу значений:

2. Построим точки. Мы видим, что эти точки симметричны относительно точки с координатами (0,1). В итоге получаем кубическую параболу, смещенную вверх по оси OY (см. рис. 3).

A₁ - 2 красных (К)
A₂ - 2 синих (С)
A₃ - 1К и 1С
Тогда во втором ящике окажется:
A₁ - 6К + 3С
A₂ - 4К + 5С
A₃ - 5К + 4С
Т.о. во втором ящике из 9 папок с вероятностью 1/21 будет 6 красных, с вероятностью 10/21 или 5, или 4 красных.
P(B₁) = 6/9 = 2/3
P(B₂) = 5/9
P(B₃) = 4/9
Значит, общая вероятность достать красную папку равна сумме произведений вероятности получения определенного состояния во втором ящике на вероятность достать красную папку при этом состоянии.
P(A) = P(A₁)P(B₁) + P(A₂)P(B₂) + P(A₃)P(B₃) = 1/21*2/3 + 10/21*5/9 + 10/21*4/9 = 1/21(6/9 + 50/9 + 40/9) = 1/21(96/9) = 1/21(32/3) = 32/63.
Вероятность того, что достали красную папку, равна 32/63.