смотрите, косинус "болтается" между 1 и -1. поэтому y будет "болтаться" между (1/2 -1) и (-1/2 -1), то есть между -1/2 и -3/2.
Период у косинуса от 2х будет pi - ясно, что 2х при этом меняются на 2pi. "Первый" максимум будет на (-pi/6), следующий (5*pi/6), между ними минимум на pi/3. Точки, когда он пересекает среднюю линюю y = -1, будут pi/12 и 7*pi/12.
Вообще лучше сначала сжать, а потом сдвигать.
y=(1/2)*cos(2*(x+pi/6)) - 1 можно так записать
y1=(1/2)cos(2*x1), где y1 = y +1; x1 = x + pi/6;
В осях x1 y1 как раз сжимаем, а потом все сдвигаем по х на pi/6 влево и по y на 1 вниз. Это нагляднее :))
V(A) ⇒ x км /ч ;
(Скорость автомобиля выехавший из пункта A обозначаем x км /ч )
AC =V(A)*t =x км/ч* 1ч = x км ;
BC =AB -AC =(100 - x) км ;
V(B) = BC / t = (100 - x )км /1ч =(100 - x ) км /ч. * * * 0 < x < 100 * * *
По условию задачи можем составить уравнение
(100 - x ) / x - x /(100 - x ) = 5/60 * * * || BC / V(A) - AC / V(B) = Δ t || * * * ;
12( (100 -x )² - x²) = x(100 -x) ;
12(10000 -200x) =100x - x² ;
x² -2500x +120000 =0 ;
x =1250 ± √(1250² -120000) = 250 ± √(25²*50² -12*4²25²) =25(50± √2308) ;
x₁= 25(50 + √2308) > 100 не решение
x₂ = 25(50 - √2308) ≈ 25(50 - 48 ,042 )
НАВЕРНО : Δ t = 50 мин , а не 5 мин
тогда :
(100 - x) / x - x /(100-x) =50/60 ⇔6(10000 - 200x) =5x(100-x) ;
5x² -1700x +60000 =0 ;
x = (170 ± 130)
x₁ =170+130 = 300 > 100 не решения
x₂ = 170 -130 = 40 (км /ч). ⇒ V(B) = (100 -40) =60 (км /ч) .
ответ : V(A) = 40 км /ч ; V(B) =60 км /ч .
* * * * * * *
x =( 850 ± √ (850² - 5*60000) /5 = (850± √ (722500 - 300000) /5 (850± √ (422500) /5 =(850± 650) /5 =5(170 ± 130) /5 =170 ± 130;