Вероятность попадания в мишень одного стрелка при одном выстреле для первого стрелка равна 0.8, для второго стрелка – 0.85. Стрелки произвели по одному выстрелу в мишень. Считая попадание в цель для отдельных стрелков событиями независимыми, найти вероятность события А – ровно одно попадание в цель.
Решение.
Рассмотрим событие A - одно попадание в цель. Возможные варианты наступления этого события следующие:
Попал первый стрелок, второй стрелок промахнулся: P(A/H1)=p1*(1-p2)=0.8*(1-0.85)=0.12
Первый стрелок промахнулся, второй стрелок попал в мишень: P(A/H2)=(1-p1)*p2=(1-0.8)*0.85=0.17
Первый и второй стрелки независимо друг от друга попали в мишень: P(A/H1H2)=p1*p2=0.8*0.85=0.68
Тогда вероятность события А – ровно одно попадание в цель, будет равна: P(A) = 0.12+0.17+0.68 = 0.97
Объяснение:
Всего можно составить 24 четырехзначных числа
Из них, на 2 будут делиться 12 чисел, на 4 - 6 чисел, на 11 - 8 чисел.
Объяснение:
Из цифр 2, 4, 7, 9 можно составить 24 четырёхзначных числа, при этом цифры в числах повторяться не будут нам в этом формула перестановок из 4-х элементов:
Р₄=4! =4*3*2*1=24
Сколько же из них будут делиться на 2?
На 2 делятся чётные числа. Среди цифр 2, 4, 7, 9 есть две чётные цифры. Если на месте единиц "закрепить" цифру 2, а остальные три цифры переставлять местами, то получим 3!=3*2*1=6 таких четных чисел. То же повторяем с цифрой 4. Получаем ещё 6 чётных чисел. Всего получено 6+6=12 чисел, делящихся на 2.
На 4 делятся числа, если две его последние цифры нули или образуют число, делящееся на 4. Нулей среди имеющихся у нас цифр нет. Зато из цифр 2, 4, 7, 9 можно составить числа 24, 72 и 92, делящиеся на 4. По очереди "закрепляем" эти цифры в конце числа, а оставшиеся 2 цифры переставляем. Получаем Р₂*3 =2*3=6 чисел делящихся на 4.
Число делится на 11, если сумма цифр, которые стоят на четных местах, равна сумме цифр, стоящих на нечетных местах, либо отличается от неё на 11.
11=2+9, 11=4+7
Числа 2 и 9 ставим на четные места, 4 и 7 - на нечётные места и наоборот, получаем 2*2*2=8 чисел:
2497, 2794, 9427, 9742, 4279, 4972, 7249, 7942
Итак, 8 чисел будут делиться на 11.
В общем случае если y=sinpA и y=cospA (где р - константа),
то период функции равен 360o/p (или 2π/p радиан ).