1) Мы 3 умножаем 12 раз=3×3×3×3×3×3×3×3×3×3×3×3=1 594 323 но будет десятицная дробь
1 594 323÷19=83 911,736842105
Далее точно так же
а)Решение системы уравнений (5/3; -6/7);
б)Решение системы уравнений (2; -1).
Объяснение:
Решить систему уравнений:
a)3x-7y=11
6x-7y=16 методом сложения
Смысл метода алгебраического сложения в том, чтобы при сложении уравнений одно неизвестное взаимно уничтожилось. То есть, чтобы коэффициенты при неизвестном каком-то были одинаковыми, но с противоположными знаками. Для того, чтобы этого добиться, преобразовывают уравнения, можно умножать обе части уравнения на одно и то же число, делить.
В данной системе нужно любое из уравнений умножить на -1:
-3x+7y= -11
6x-7y=16
Складываем уравнения:
-3х+6х+7у-7у= -11+16
3х=5
х=5/3
Теперь подставляем значение х в любое из двух уравнений системы и вычисляем у:
6x-7y=16
-7у=16-6х
7у=6х-16
7у=6*5/3-16
7у= -6
у= -6/7
Решение системы уравнений (5/3; -6/7);
б)3x-y=7
2x+3y=1 методом подстановки
Выразим у через х в первом уравнении, подставим выражение во второе уравнение и вычислим х:
-у=7-3х
у=3х-7
2x+3(3х-7)=1
2х+9х-21=1
11х=1+21
11х=22
х=2
у=3х-7
у=3*2-7
у= -1
Решение системы уравнений (2; -1)
ответ:
тангенс угла наклона прямой, содержащей диагональ квадрата (в условиях она проходит через данные вершины) = -1/2. угол между сторонами квадрата и диагональю - пи/4. тогда тангенсы углов наклона прямых, содержащих стороны квадрата, равны -3 и 1/3 (соответственные значения получаются применением формулы тангенса суммы к тг (пи - арктг (1/2) - пи/4) и тг (пи - арктг (1/2) + пи/ значит, уравнения прямых принимают вид у = -3х - 1 и у = (1/3)х - 1.
п. с. почему-то символы из раскладки использовать не получается, поэтому функции тангенс и арктангенс обозначены соответственно тг и арктг.
объяснение:
3^12 - 3^11 + 3^9 = 3^9 (3^3 - 3^2 + 1) = 3^9 * 19
Так как 19 делится 19, то и все выражение делится на 19
5a (x + y) - 10b(x + y) = (x + y)(5a - 10b) =
= 5(x + y)(a - 2b)