М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Albinamuratshaeva96
Albinamuratshaeva96
16.02.2021 09:44 •  Алгебра

Один из корней уравнения 2x²-21 x+c=0 равен 8. Найдите другой корень и саободный член c.​

👇
Ответ:
Николь560
Николь560
16.02.2021

решение на фотографии


Один из корней уравнения 2x²-21 x+c=0 равен 8. Найдите другой корень и саободный член c.​
4,4(1 оценок)
Открыть все ответы
Ответ:
MrLech
MrLech
16.02.2021

Тангенс угла наклона касательной равен производной в точке касания к графику функции.

tgα = y'(x).

1) y = 0,2x^2 + 2x - 4, A(2; 0,8).

Проверяем - принадлежит ли точка данной функции.

0,2*2² + 2*2 - 4 = 0,8. Да, принадлежит.

Находим производную: y' = 0,2*2x + 2.

y'(2) = 0,2*2*2 + 2 = 2,8.

ответ:  tgα = 2,8.

2) y = -3x^2 - x + 5,  А(-2; -5).

Аналогично проверяем - точка А на кривой (парабола).

y' = -6x - 1,

y'(-2) = -6*(-2) - 1 = 12 - 1 = 11.

ответ: tgα = 11.

3) y = (x^2 - 1)/(x - 5), A(3; 3 2/3). (Ели так дано задание)

В этой задаче сложное решение, так как точка А не лежит на кривой.

Производная : y' = (2x(x - 5) - 1*(x^2 - 1))/(x - 5)^2) = (x^2 - 10x + 1)/((x - 5)^2).

Производная в точке касания хо: (xо^2 - 10xо + 1)/((xо- 5)^2).

Получим уравнение касательной проходящей через точку A(3;3 2/3):

3 2/3 = ((xо^2 - 10xо + 1)/((xо- 5)^2))(3 - хо) + ((xо^2 - 1)/(xо - 5)).

Решение затруднено, так функция - кубическая.

Ориентировочно решение найдено графически в программе ГеоГебра: у = -18,76х + 59,95.

График приведен во вложении.


Найдите tg угла наклона касательной к графику функции y(x), проходящей через точку А 1)y=0.2x^2+2x-
4,6(44 оценок)
Ответ:
1) Новый общий знаменатель для двух дробей это y в максимальной присутствующей степени, т.е.  y^{4}. Тогда дополнительным множителем к первой дроби будет единица, а ко второй дроби  y^{3}.
Получается \frac{2x}{y^{4}} и \frac{3x^{3}}{y^{4}}.
2) Дополнительный множитель к первой дроби будет y, а ко второй a^{5}. Получается  \frac{2by}{ya^{5}} и \frac{6a^{5}}{ya^{5}}.
3) Новый общий знаменатель для двух дробей будет это 6x^{2}y^{2}.
Тогда дополнительный множитель к первой дроби будет 2x, а ко второй y. Получается  \frac{7y}{6x^{2}y^{2}} и \frac{4x}{6x^{2}y^{2}}.
4) Новым общим знаменателем для двух дробей будет 7x(x+5). Тогда дополнительным множителем к первой дроби будет 7x, а ко второй (x+5). Получается \frac{28x}{7x(x+5)} и \frac{3x+15}{7x(x+5)}.
5) Т.к. новый общий знаменатель должен включать в себя все множители из обоих дробей, то он будет равен (3x-3y)(4x+4y). Из каждой скобки можно вынести общий множитель, перемножить их, а скобки свернуть по формуле "разность квадратов":
(3x-3y)(4x+4y)=3(x-y)4(x+y)=12(x^{2}-y^{2}). ответ и будет являться новым общим знаменателем.
Дополнительный множитель к первой дроби будет (3x-3y), а ко второй (4x+4y). Получается \frac{8x^{2}+8xy}{12(x^{2}-y^{2})} и \frac{9xy-9y^{2}}{12(x^{2}-y^{2})}.
6) Из знаменателя первой дроби вынесем общий множитель:
2a+2=2(a+1). Таким образом новый общий знаменатель будет равен 2(a+1). Дополнительный множитель к первой дроби будет 1, а ко второй 2. Получается \frac{a}{2(a+1)} и \frac{6}{2(a+1)}.
4,7(58 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ