ответ: x=2
Объяснение: ОДЗ: система x+2≥0, 3x+2≥0
x≥-2, x≥-2/3, x∈[-2/3;+∞)
(√(x+2))⁶=(∛(3x+2))⁶
(x+2)³=(3x+2)²
x³+3x²·2+3x·4+8-9x²-12x-4=0
x³-3x²+4=0
Делители четверки: ±1, ±2, ±4. Среди них подберем 1 корень:
(-1)³-3·(-1)²+4=0
0=0 , (x+1) - первый множитель. Разделим тричлен на x+1 в столбик:
x³-3x + 4║x+1
x³+x² x²-4x+4
-4x²+0·x
-4x²-4x
4x+4
4x+4
x³-3x²+4=(x+1)(x²-4x+4)=(x+1)(x-2)²=(x+1)(x-2)(x-2)=0
x₁=-1, x₂=2
В ОДЗ входит x₂
1) Найдём производную: y' = 3x² + 18x + 15; Решим уравнение: 3x² + 18x + 15 = 0, x + 6x + 5 = 0, по теореме Виета: x₁ + x₂ = - 6, x₁ · x₂ = 5 ⇒
x₁ = - 1; x₂ =- 5 ⇒ на промежутке ( - ∞, - 5) функция возрастает;
на ( -5, - 1) убывает и на ( - 1, + ∞) возрастает, таким образом ( -5) - точка максимума, (-1) - точка минимума.
Вычислим: y (- 5) = (-5)³ + 9 · (-5)² + 15 · (-5) - 25 = 0; y (-1) = (-1)³ + 9 · (-1)² + 15 · (-1) - 25 = - 32
Итак: Строим график - От ( +∞) до точки ( - 5; 0) функция возрастает; От точки ( -5; 0) до точки (- 1; - 32) функция убывает и от точки ( -1; - 32)
до (-∞) возрастает.
Точки перегиба: ( -5; 0) и (- 1; - 32)