1.D(F)=[0;+∞)
1.Е(F)=[0;+∞)
3. Нули функции x-√x=0; √х*(√x-1)=0; x=0 ;x=1.
4. Промежутки знакопостоянства при х ∈(0;1) F(x)<0; при х ∈(1;+∞) F(x)>0
5. Функция непериодическая.
6. Функция не является ни четной, ни нечетной. т.к. область определения не симметрична относительно начала отсчета.
7. Асимтптоты. т.к. предел функции при х стремящемся к ±∞ равен ±∞, то горизонтальные асимптоты справа и слева отсутствуют. Вертикальных асимптот тоже нет. Функция в области определения непрерывна. Наклонные асимптоты ищем в виде у=кх+b, где к-предел отношения F(х)/x при х стремящемся к ∞, этот предел равен 1, а b = пределу (F(x)-kx) при х стремящемся к ∞, и он равен -∞. Поэтому наклонных асимптот нет.
8. Промежутки монотонности. Первая производная равна 1-1/(2√х)=(2√х-1)/(2√х), она равна нулю при х=1/4, и производная отрицательна при х∈(0;1/4) здесь функция убывает. и положительна при х∈(1/4;+∞) здесь функция возрастает.
9. Экстремумы. При переходе через точку х=1/4 производная меняет знак с минуса на плюс. х=1/4- точка минимума. Минимум равен 1/4-√1/4=-1/4
10. Вторая производная равна 1/(4х³/²) в области определения положительна, поэтому график вогнут. Точек перегиба нет.
График функции см. ниже.
=(a + b - a + b)(a² + 2ab + b²- a² + b² + a² - 2ab + b²) =2b(a² + 3b²).
(применили формулу разности кубов)
2) (2x+y)^3+(x-2y)^3 = (2х + у + х - 2у)((2х +у)² -(2х +у)(х - 2у)+(х - 2у)²)=
=(3х -у)(4х² + 4ху +у² - 2х²-ху +4ху+2у² + х² - 4ху +4у²) =
= (3х -у)(3х²+3ху +7у²)
(применили формулу суммы кубов)
3) (2mn-1)^3+1 =(2mn -1 +1)(4m²n² -4mn +1 - 2mn +1 +1)=
=2mn(4m²n² -6mn +3)
(применили формулу суммы кубов)
4) (3a-2b)^3+8b^3 = (3a -2b +2b)(9a² -12ab +4b² -6ab +4b² + 4b²)=
=3a(9a²-18ab + 12b²)
( сумма кубов)