При умножении степеней с одинаковыми основаниями основание остаётся без изменений, а показатели степеней складываются.
При делении степеней с одинаковыми основаниями основание остаётся без изменений, а из показателя степени делимого вычитают показатель степени делителя. (Проще говоря, вычитаются).
1)0,6¹³:0,6¹¹=0,6¹³⁻¹¹=0,6²=0,6*0,6=0,36
2)(-5 и 3/7)²²: (-5 и 3/7)²¹=(-5 и 3/7)²²⁻²¹=(-5 и 3/7)¹= -5 и 3/7
Пусть во второй бригаде х рабочих, тогда в первой 2х рабочих. В первой бригаде число рабочих уменьшилось на 5, значит их стало 2х-5. А во второй число рабочих уменьшилось на 2, значит их стало х-2. Так как в первой бригаде рабочих стало на 7 больше, чем во второй, то составим и решим уравнение: 2х-5-(х-2)=7 2х-5-х+2=7 х-3=7 х=7+3 х=10 значит, во второй бригаде было 10 рабочих, а стало 10-2=8 рабочих а в первой бригаде было 2*10=20 рабочих, а стало 20-5-15 рабочих. ответ: в первой бригаде стало 15 рабочих, а во второй 8 рабочих
Объяснение:
При умножении степеней с одинаковыми основаниями основание остаётся без изменений, а показатели степеней складываются.
При делении степеней с одинаковыми основаниями основание остаётся без изменений, а из показателя степени делимого вычитают показатель степени делителя. (Проще говоря, вычитаются).
1)0,6¹³:0,6¹¹=0,6¹³⁻¹¹=0,6²=0,6*0,6=0,36
2)(-5 и 3/7)²²: (-5 и 3/7)²¹=(-5 и 3/7)²²⁻²¹=(-5 и 3/7)¹= -5 и 3/7
3)(-1,21)²⁴: (-1,21)²³=(-1,21)²⁴⁻²³=(-1,21)¹= -1,21
4)(pg)¹⁸: (pg)⁸: (pg)³=(pg)⁷
а)(pg)¹⁸: (pg)⁸=(pg)¹⁸⁻⁸= (pg)¹⁰
б)(pg)¹⁰: (pg)³=(pg)¹⁰⁻³= (pg)⁷