1. Известно, что ,
2. Известно, что , тогда
3. Обе точки имеют координаты , причем при подставлении этих координат в уравнение функции, мы получаем верное равенство.
Смотрим на точку А:
Отлично, уравнение известно теперь в таком виде: , в него подставим вторую точку и найдем .
4. Решаем аналогично. Точка А:
Уравнение уже в виде:
Точка B:
5. Условие симметрии относительно прямой такое, что у функции меняются местами область определения и область значений, то есть подставляя вместо мы получаем по итогу . При взаимно однозначном соответствии области определения и области значений (как в случае прямых) все вообще просто и работает везде.
Что нужно сделать: есть , делаем
Пусть - канонический базис в .
Тогда матрицу перехода можно найти следующим образом:
Если записать блочную матрицу и привести путем элементарных преобразований к виду , то
Матрицу легко получить: достаточно записать в столбцы координаты векторов базиса . Аналогично с матрицей .
В итоге необходимо получить вид следующей матрицы:
Вычтем первую строку из второй и третьей:
Вычтем из первой строки 2 третьих и поменяем их местами:
Вычтем из третьей строки вторую:
Прибавим ко второй строке 2 третьих и вычтем из первой третью:
Делим вторую строку на 3:
Прибавляем в первой строке 2 вторых:
ответ во вложений.. ....