М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
alla073
alla073
28.12.2022 09:05 •  Алгебра

Вычислите площадь плоской фигуры, ограниченной линиями


Вычислите площадь плоской фигуры, ограниченной линиями

👇
Ответ:
lele4
lele4
28.12.2022

ВСО

Объяснение:


Вычислите площадь плоской фигуры, ограниченной линиями
Вычислите площадь плоской фигуры, ограниченной линиями
4,5(47 оценок)
Открыть все ответы
Ответ:
youlia86
youlia86
28.12.2022

1.

104° - тупой угол, только один в треугольнике.

180°-104°=76° - сумма двух других углов. они равны, т.к. треугольниу равнобедренный.

76°:2=38° - углы при основании равнобедренного треугольника.

2.

а)   Сумма острых углов прямоугольного треугольника равна 90°.

90-30=60° - величина второго угла

Т.к. EF - биссектриса, то

60°:2=30° - ∠DEF

ED -  основание ΔDEF, ∠DEF=∠EDF, EF=DF, следовательно, треугольник равнобедренный.

б)   СF<DF

3.

х  см - длина одной стороны

х+17  см - длина другой стороны.

Р=77 см

Примем большую сторону за основание.

х+х+х+17=77

3х=77-17

3х=60

х=20(см) - длина равных сторон

20+17=37(см) - длина основания

Теперь примем за основание меньшую сторону.

х+2*(х+17)=77

х+2х+34=77

3х=43

х≈14,3(см)  - длина основания

14,3+17=31,3(см) - длина каждой из двух других сторон.

4,6(70 оценок)
Ответ:
alexaaa2
alexaaa2
28.12.2022

|x-2|+|x-4|>_2

нули подмодульного выражения - это такие значения переменной х, при которых значение модуля равно нулю.

в нашем случае необходимо найти нули подмодульных выражений

|х-2| и |х-4|

 х=2          х=4

 

                               х=2                                      х=4

 ||> х

 |х-2|= -х+2                         |х-2|=  х-2                           |х-2|=  х-2

 |х-4|= -х+4                         |х-4|= -х+4                          |х-4|=  х-4

 

Значит, решаем, раскрывая модули для каждого их указанных интервалов.

 

|x-2|+|x-4|>_2 при х<2:

2-х+4-х>2

6-2х>2

х<2; с учетом исследуемого интервала:

х<2

|x-2|+|x-4|>_2 при 2<=х<4

х-2-х+4>2

2>2 - решений на интервале нет


|x-2|+|x-4|>_2 при х>=2

x-2+x-4>2

2х>8

х>4. С учетом интервала

х>4


ответ: (-бскнчнсть;2) ; (4; +бскнчнсть)





4,4(23 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ