Решение: Обозначим собственную скорость моторной лодки за (х) км/час, тогда скорость лодки по течению равна: (х+2) км/час, а против течения реки, скорость лодки равна: (х-2) км/час) Расстояние 60 км лодка проплыла за время: 60/(х+2) час, а расстояние 32 км, лодка проплыла за время: 32/(х-2) час А так как общее время в пути составило 5 часов, то: 60/(х+2)+32/(х-2)=5 (х-2)*60+(х+2)*32=(х+2)*(х-2)*5 60х-120+32х+64=5х²-20 5х²-20-92х+56=0 5х²-92х+36=0 х1,2=(92+-D)/2*5 D=√(8464-4*5*36)=√(8464-720)=√7744=88 х1,2=(92+-88)/10 х1=(92+88)/10 х1=18 х2=(92-88)/10 х2=0,4 - не соответствует условию задачи- низкий показатель для скорости моторной лодки Отсюда: Собственная скорость моторной лодки 18км/час
при любом значении b решите уравнение : (x^2+(3b+2)X+2b^2 +3b+1) / (x^2 - 5x +4)=0
(x²+(3b+2)x+2b² +3b+1) / (x² - 5x +4)=0 ; ОДЗ: x² - 5x +4≠0 ⇒ [ x ≠ 1 ; x ≠ 4. --- x²+(3b+2)x+2b² +3b+1=0 ; D=(3b+2)² - 4(2b² +3b+1)= b² ≥ 0 всегда имеет решения : x₁ = (-3 b- 2 - b)/2 = -1 - 2b , если -1 - 2b ≠ 1 и -1 - 2b ≠ 4 , т.е. если b ≠ -1 и b ≠ -2,5. x₂ = (- 3b - 2 +b)/2 = -1 - b , опять если -1 - b ≠ 1 b и -1 - b ≠ 4 , . т.е. если b ≠ -2 и b ≠ - 5.
* * * * P.S. Можно было в самом начале для уравнения x²+(3b+2)x+2b² +3b+1=0 исключить x =1 и x = 4 в качестве корней;
1) 1²+(3b+2)1+2b² +3b+1=0 ⇔2b² +6b+4 =0⇔ b² +3b+2 =0 ⇒[ b = -2 ; b = -1 . 2) 4²+(3b+2)4+2b² +3b+1=0⇔2b² +15b+25 =0⇔ [ b = -5 ; b = - 2,5 .
x/6=пи+пи\2+пиn nєz
x=6пи+3пи+6пиn nєz
n=0 х=6пи+3пи=9пи
n=1 х=6пи+3пи+6пи=15пи