Вначала рассмотрим функция у=х^2+2x+1 и если у=о, то х^2+2x+1=0 найдём нули этого ур-ия, по теореме Виета он будет один х=-1 чертим прямую(эта прямая является осью абсцисс, т.к. мы будем сравнивать с нулём) графиком является парабола, отмечаем точку -1 на прямой 1)так как графиком парабола, и ветви её направлены вверх, а нам нужно меньше нуля, то решений здесь не будет 2) здесь от минус бесконеч-ти до -1 и от -1 до плюс бес-ти(т.к. парабола вся в верху) 3)здесь {-1} 4)здесь от минус бесконеч-ти до плюс бес-ти(т.к. парабола вся в верху) и знак >=
Свечи горят пропорционально объему. Их форма - цилиндр. V(цил) = pi*R^2*H Если они одинаковой длины H, то скорость пропорциональна R^2. R1^2/R2^2 = 5/4 R1 = R2*√5/2 - во столько раз один диаметр больше другого. Через время t сгорел одинаковый объем свечей V. На 1 свече это V = pi*R2^2*5/4*H1, на 2 свече V = pi*R2^2*H2 И эти объемы сгоревших свечей одинаковы pi*R1^2*5/4*H1 = pi*R1^2*H2 H2 = 5/4*H1 Остались огарки H - H1 = 4(H - H2) H - H1 = 4H - 4*5/4*H1 5H1 - H1 = 4H - H H1 = 3/4*H На 1 свече сгорело 3/4 длины, значит, это было через t = 3/4*5 = 15/4 = 3 3/4 часа = 3 часа 45 мин.
найдём нули этого ур-ия, по теореме Виета он будет один х=-1
чертим прямую(эта прямая является осью абсцисс, т.к. мы будем сравнивать с нулём)
графиком является парабола, отмечаем точку -1 на прямой
1)так как графиком парабола, и ветви её направлены вверх, а нам нужно меньше нуля, то решений здесь не будет
2) здесь от минус бесконеч-ти до -1 и от -1 до плюс бес-ти(т.к. парабола вся в верху)
3)здесь {-1}
4)здесь от минус бесконеч-ти до плюс бес-ти(т.к. парабола вся в верху)
и знак >=