1)2((8+x)+x)=20
8+2x=20:2
8+2х=10
2х=10-8
2х=2
х=2:2
х=1-ширина
8+х=8+1=9 - длина
2)2х+х=441
3х=441
х=441:3
х=147-второе число
3х=294-первое число
3)х+у+х-у=140+14
2х=154
х=154:2
х=77-первое число
77+у=140
у=140-77
у=63-второе число
4) х+(х+1)+(х+2)=201
3х+3=201
3х=201-3
3х=198
х= 198:3
х=66
х+1=67
х+2=68
Это числа 66,67 и 68
В решении.
Объяснение:
Формула квадрата суммы: (а + b)² = a² + 2ab + b²;
Формула квадрата разности: (а - b)² = a² - 2ab + b²;
Формула разности квадратов: a² - b² = (a - b)(a + b).
1. Представьте в виде многочлена выражение:
а) (х + 9)² = х² + 18х + 81;
б) (3а - b)² = 9а² - 6ab + b²;
в) (m - 5)² = m² - 10m + 25;
г) (2а + b)² = 4a² + 4ab + b²;
д) (m - 7)(m + 7) = m² - 49;
е) (6а + 10b)(10b - 6а) = 100b² - 36a²;
ж) (a + 3)(a - 3) = a² - 9;
з) (8x + 5y)(5y - 8x) = 25у² - 64х².
2. Разложите на множители:
а) c² - 1 = (с - 1)(с + 1);
б) 25у² - 4 = (5у - 2)(5у + 2);
в) x² - 81 = (х - 9)(х + 9);
г) 16x² - 49 = (4х - 7)(4х + 7).