Объяснение:
а) х² - 8х = 0, х·(х -8) = 0 ⇒ х =0 или х - 8 = 0; х =0 или х = 8.
б. 6х² = 12; х² = 12÷6, х² = 2, х = ±√2
в) 3x² – 48 = 0, 3x²= 48, x² = 48÷3,x² = 16, х = ± 4
г) 6x² – 5x + 1 = 0;D = b²- 4ac = 25 - 4·6 = 24; x = -b ±√D/2a
x1 = 5+√1/12 = 5+1/12 = 6/12 = 1/2, x2 = 5-1/12 = 4/12 = 1/3
д) x² –16x + 71 = 0.D = b²- 4ac =256 - 4·1·71= 256 -284 =-28 - меньше 0 ⇒∅
е) (4x – 3)2 + (3х – 1)(3х+1) = 9
8х -6 +(9х²-3х+3х-1)=9; 8х -6+(9х²-1) =9; 8х -6 +9х²-1-9 = 0; 9х²+8х-16 =0
D = b²- 4ac = 64+4·9·16= 64+576 =640
х1 = -8+√640/18/= -8+8√10/18; х2 = -8-8√10/18
2*.При яких значеннях а рівняння аx² + аХ + 36 = 0 має один корінь?
D = 0⇒ а²-4·а·36 = 0, а²-144 = 0, а²=144, а = ±12
Нужно воспользоваться формулой разности квадратов практически во всех примерах: (a - b)(a + b) = a² - b².
Выполните умножение:
1) 5b(b - 1)(b + 1) = 5b(b² - 1) = 5b³ - 5b;
2) (c + 2)(c - 2) · 8c² = (c² - 4) · 8c² = 8c⁴ - 32c²;
3) (m - 10)(m² + 100)(m + 10) = (m - 10)(m + 10)(m² + 100) =
= (m² - 100)(m² + 100) = m⁴ - 10 000;
4) (a² + 1)(a² - 1)(a⁴ + 1) = (a⁴ - 1)(a⁴ + 1) = a⁸ - 1;
Упростите выражение:
1) (x + 1)(x - 1) - (x + 5)(x - 5) + (x + 1)(x - 5) = x² - 1 - (x² - 25) + x² - 5x + x - 5 = x² - 1 - x² + 25 + x² - 4x - 5 = x² - 4x + 19;
2) 81a⁸ - (3a² - b³)(9a⁴ + b⁶)(3a² + b³) = 81a⁸ - (3a² - b³)(3a² + b³)(9a⁴ + b⁶) = 81a⁸ - (9a⁴ - b⁶)(9a⁴ + b⁶) = 81a⁸ - (81a⁸ - b¹²) = 81a⁸ - 81a⁸ + b¹² = b¹².
1) (c² - 6)(c² + 6)(36 + c⁴) = (36 - c⁴)(36 + c⁴) = 36² - c⁸ = 1296 - c⁸
2) (x² - y²)(x² + y²)(x⁴ + y⁴) = (x⁴ - y⁴)(x⁴ + y⁴) = x⁸ - y⁸