подставляем значение из А и Б в функцию
· Для того, чтобы построить высоту остроугольного треугольника, проведите из его вершины прямую, перпендикулярную противолежащей стороне. Отрезок, соединяющий точку пересечения перпендикулярных прямых и вершину, и будет являться вершиной треугольника, опущенной из заданной высоты. При этом все три высоты остроугольного треугольника должны лежать внутри треугольника.
· В случае тупоугольного треугольника, для того, чтобы построить высоты, опущенные из двух его острых углов, необходимо продолжить прямые, содержащие стороны, прилегающие к тупому углу. Высота, опущенная из острого угла тупоугольного треугольника, лежит на продолжении противолежащей вершине стороны, за пределами треугольника.
· Если один из углов треугольника прямой, то стороны треугольника, прилегающие к прямому углу (катеты) уже являются его высотами (совпадают с высотами треугольника). Третья высота прямоугольного треугольника, проведенная к его гипотенузе, лежит внутри пределов сторон треугольника.
10k+1
16
1216
Объяснение:
1. Любое натуральное число, которое даёт при делении на 10 остаток 1, можно записать в виде 10k+1, где k − 0;1;2...
2. Для того чтобы узнать, сколько существует таких натуральных чисел, которые не превосходят 160, необходимо рассмотреть арифметическую прогрессию (an), где a1=1,d=10, и n — натуральное число;
(a1=1, так как 1 — натуральное число, и при делении на 10 даёт остаток 1).
an=(n−1)d+a1;(n−1)d+a1≤160;(n−1)⋅10+1≤160;10n−10+1≤160;n≤16910;n≤16,9.
Так как n — натуральное число, то получим n= 16.
3. Остаётся найти сумму всех 16 членов арифметической прогрессии.
Сумму первых n членов арифметической прогрессии можно найти, используя формулу:
Sn=(a1+an)⋅n2, где n — число членов последовательности, и an=a1+(n−1)d.
В заданном случае: n= 16; d= 10; a1=1; a16=10⋅(16−1)+1=151.
Подставив значения в формулу суммы первых n членов арифметической прогрессии, получим:
S16=(a1+an)n2=(1+151)⋅162=1216.
Объяснение:
ответ: k=1,5 b=6.