Чтобы найти НОД чисел нужно разложить их на простые множители и перемножить между собой общие множители (подчёркнуты).
Чтобы сократить дробь, нужно числитель и знаменатель разделить на НОД.
1) 24 = 2 * 2 * 2 * 3
60 = 2 * 2 * 3 * 5
НОД (24; 60) = 2 * 2 * 3 = 12
2) 45 = 3 * 3 * 5
105 = 3 * 5 * 7
НОД (45; 105) = 3 * 5 = 15
3) 39 = 3 * 13
130 = 2 * 5 * 13
НОД (39; 130) = 13
4) 64 = 2 * 2 * 2 * 2 * 2 * 2
144 = 2 * 2 * 2 * 2 * 3 * 3
НОД (64; 144) = 2 * 2 * 2 * 2 = 16
Чтобы найти НОК чисел, нужно разложить их на простые множители и к множителям бОльшего числа добавить недостающие множители (подчёркнуты) и перемножить их между собой.
Наименьшее общее кратное и будет наименьшим общим знаменателем.
1) 12 = 2 * 2 * 3
8 = 2 * 2 * 2
НОК (12; 8) = 2 * 2 * 3 * 2 = 24
2) 9 = 3 * 3
15 = 3 * 5
НОК (9; 15) = 3 * 5 * 3 = 45
3) 25 = 5 * 5
15 = 3 * 5
НОК (25; 15) = 5 * 5 * 3 = 75
4) 16 = 2 * 2 * 2 * 2
24 = 2 * 2 * 2 * 3
НОК (16; 24) = 2 * 2 * 2 * 3 * 2 = 48
task/29646731 Чему равно наибольшее значение функции y=x²-3x+2 на отрезке [-5;5] ?
y= x²-3x+2 ⇔ y = (x - 3/2)² - 1/4 ⇒ min y = - 1/4 , при x = 3 /2 ∈ [-5;5]
График парабола ; A(0;2) ; B(1 ;0) ; C(2 ; 0) ; G(1,5 ; -0;25) точки графика
Функция убывает , если x ∈ [-5 ; 3/2] , возрастает , если x ∈ [ 3/2 ; 5] .
y( -5) =(-5)² - 3*(-5) +2 = 42. y( 5) =5² - 3*5 +2 = 12 .
ответ: 42.
ИЛИ
* Непрерывная на отрезке функция достигает максимума и минимума * *
y ' = (x²-3x+2) ' = (x²) '- (3x) '+(2) ' =2x -3*(x)' +0 =2x -3 . y' =0 ⇒ x =3/2
y ' " - " " +"
1,5 (критическая точка x=1,5 →точка минимума)
y ↓ min ↑
y( -5) =(-5)²- 3*(-5) +2 = 42. y (1,5)=1,5²-3*1,5 +2= -0,25 ; y( 5) =5²- 3*5 +2 = 12 .
у min = y(1,5) = - 0,25 ; у max = y(-5) = 42.
Пусть все деревья - х, тогда яблони- х/6. х-х/6 - остальные деревья. деревья дачника светлова - (х-х/6)*1/6.
(х-х/6)- (х-х/6)*1/6 =5х/6-5х/36=25х/36 - оставшиеся деревья.
(25х/36)/2=25х/72 - принадлежит дачнице Смирновой.
25х/72=25
25х=25*72
х=72 дерева всего