Чтобы выполнить сложение или вычитание алгебраических дробей с одинаковыми знаменателями, надо найти сумму или разность числителей, а знаменатель оставить без изменений.
Пример 1. Выполните сложение алгебраических дробей:
а) a + 3 + a - 3 б) 2b - 1 + b + 4
b b 2 2
Решение: складываем числители дробей и выполняем приведение подобных членов (если они есть):
а) a + 3 + a - 3 = (a + 3) + (a - 3) = a + 3 + a - 3 = 2a
b b b b b
б) 2b - 1 + b + 4 = (2b - 1) + (b + 4) = 2b - 1 + b + 4 = 3b + 3
2 2 2 2 2
Пример 2. Выполните вычитание алгебраических дробей:
а) x + 5 - 5x б) a + b - a + 4
3 3 a - 5 a - 5
Решение: вычитаем из числителя первой дроби числитель второй дроби и выполняем приведение подобных членов (если они есть):
а) x + 5 - 5x = x + 5 - 5x = 5 - 4x
3 3 3 3
б) a + b - a + 4 = (a + b) - (a + 4) = a + b - a - 4 = b - 4
a - 5 a - 5 a - 5 a - 5 a - 5
Сложение и вычитание алгебраических дробей с одинаковыми знаменателями в виде общих формул:
a + b = a + b и a - b = a - b (c≠0)
c c c c c c
Если дроби имеют знаменатели, состоящие из противоположных выражений, то есть выражений, отличающихся только знаком, надо тождественно преобразовать одну из дробей, чтобы привести их к общему знаменателю. Преобразование выполняется в соответствии с правилами знаков:
a = -a
b -b
Данное преобразование можно рассматривать как умножение числителя и знаменателя дроби на -1. Следовательно, если числитель и знаменатель алгебраической дроби заменить на противоположные выражения, то получится дробь, равная данной. Полученную дробь можно переписать, поставив один из минусов перед дробью:
a = -a = - a = - -a
b -b -b b
Также, любую отрицательную дробь можно сделать положительной, перенеся минус, стоящий перед дробью, в числитель или знаменатель:
- a = -a = a
b b -b
Пример 1. Найдите сумму дробей:
5a + 3a
b - c c - b
Решение: чтобы выполнить сложение, поменяем знаки перед второй дробью и в её знаменателе на противоположные:
5a + 3a = 5a - 3a = 5a - 3a = 2a
b - c c - b b - c -(c - b) b - c b - c b - c
Пример 2. Найдите разность дробей:
n + 5 - 2n
n2 - m m - n2
Решение: чтобы выполнить вычитание, перенесём знак минус, стоящий перед второй дробью, в её знаменатель:
n + 5 - 2n = n + 5 + 2n = n + 5 + 2n = 3n + 5
n2 - m m - n2 n2 - m -(m - n2) n2 - m n2 - m n2 - m
Сложение и вычитание с разными знаменателями
Чтобы найти сумму или разность алгебраических дробей с разными знаменателями, надо:
найти общий знаменатель,
привести алгебраические дроби к общему знаменателю,
выполнить сложение или вычитание,
сократить полученную дробь, если это возможно.
Пример 1. Выполните сложение дробей:
2a + b
a + b a - b
Решение: находим общий знаменатель. Он будет равен произведению знаменателей данных дробей:
(a + b)(a - b)
Как находить общий знаменатель, Вы можете узнать на странице Приведение алгебраических дробей к общему знаменателю. Далее умножаем числитель каждой дроби на дополнительный множитель:
2a(a - b) = 2a2 - 2ab
b(a + b) = ab + b2
Общий знаменатель можно свернуть в разность квадратов. В итоге у нас получится:
2a + b = 2a2 - 2ab + ab + b2 =
a + b a - b a2 - b2 a2 - b2
= 2a2 - 2ab + ab + b2 = 2a2 - ab + b2
a2 - b2 a2 - b2
Пример 2. Выполните вычитание дробей:
b - 2
a2 - ab a - b
Решение: разложим знаменатель первой дроби на множители:
a2 - ab = a(a - b)
Так как данное выражение делится на знаменатель второй дроби, то возьмём его в качестве общего знаменателя. Значит, теперь нам надо умножить числитель второй дроби на дополнительный множитель a:
2 · a = 2a
Получаем:
b - 2 = b - 2a = b - 2a
a2 - ab a - b a(a - b) a(a - b) a(a - b)
Пример 3. Выполните сложение:
x + x2
1 - x
Решение: запишем первое слагаемое в виде дроби и приведём её к знаменателю 1 - x:
x + x2 = x + x2 = x(1 - x) + x2 = x - x2 + x2
1 - x 1 1 - x 1 - x 1 - x 1 - x 1 - x
Теперь можно выполнить сложение дробей с одинаковыми знаменателями:
x - x2 + x2 = x - x2 + x2 = x
1 - x 1 - x 1 - x 1 - x
Точно также можно выполнять сложение и вычитание алгебраических дробей с любыми многочленами.
Объяснение:
Даны точки A(3;9) B(8;4) C(-1;7).
1) составить уравнение окружности, проходящей через эти точки, определить координаты центра N и величину R радиуса окружности.
Координаты середин сторон треугольника (основания медиан).
х у
А₁ 3,5 5,5
х у
В₁ 1 8
х у
С₁ 5,5 6,5
Составим уравнения серединных перпендикуляров для сторон АВ и ВС, которые, как известно, проходят через основания медиан A1,B1.
и центр описанной окружности O2:
для стороны AB имеем
C1O2: x−xC1yB−yA=y−yC1xA−xB ⇔ x−5.54−9=y−6.53−8 ⇔ x−5.5−5=y−6.5−5 ⇔ x−y+1=0;
для стороны AC имеем
B1O2: x−xB1yC−yA=y−yB1xA−xC ⇔ x−17−9=y−83−(−1) ⇔ x−1−2=y−84 ⇔ 2x+y−10=0.
Теперь находим координаты центра описанной окружности как точки пересечения срединных перпендикуляров.
x−y+1=0
2x+y−10=0 сложение
3х - 9 = 0. Отсюда х = 9/3 = 3. Значение по оси Оу находим постановкой значения х = 3 в уравнение перпендикуляра. у = х + 1 = 3 + 1 = 4.
Координаты центра N(3; 4).
Находим радиус R = √((3 - 3)² + (4 - 9)²) = √(0 + 25) = 5.
Уравнение окружности: (x − 3)² + (y − 4)² = 5².
2) Написать уравнение эллипса, проходящего через точки B и C, найти полуоси, фокусы, эксцентриситет.
Примем центр эллипса в начале координат (иначе нет решения без дополнительных данных).
(х²/а²) + (у²/b²) = 1. Подставим заданные координаты точек В и С.
(64/а²) + (16/b²) = 1.
(1/а²) + (49/b²) = 1. Замена: (1/а²) = u, (1/b²) = v. Система:
64u + 16v = 1 64u + 16v = 1
1u + 49v = 1 Умножим = 64 64u + 3136v = 64 вычтем 2 - 1
3120v = 63
v = 63/3120 = 21/1040 ≈ 0,020192308
Находим параметр b = √(1/v) = 7,037316.
u = 1 - 49v = 0,010577.
Находим параметр a = √(1/u) = 9,72345.
Уравнение эллипса (х²/9,72345²) + (у²/7,037316²) = 1.
Параметр с = √(a² - b²) = 6,709817.
Эксцентриситет е = с/а = 6,709817/9,72345 = 0,690066.
3) точки и кривые в системе координат в приложении.