М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
krsssn
krsssn
27.09.2021 09:13 •  Алгебра

Довести нерівність
x^2+9y^4+1=>-3xy^2-x+3y^2

👇
Ответ:
slkncv
slkncv
27.09.2021

x²+9y⁴+1 ≥ -3xy²-x+3y²

x²+x+1 ≥ -3xy²+3y²-9y⁴

x²+x+1 ≥ -3y²(x-1+y²)

y²≥0 за будь-якого значення у

⇒ -3y²≤0

Знайдемо вершину параболи f(x)=x²+x+1

xo= -b/2a = -1/2= -0,5

f(xo)= 0,25-0,5+1=0,75

Вітки параболи напрямлені вгору, адже а>0, отже в такому випадку значення виразу x²+x+1 завжди додатнє (бо функція завжди додатня)

Тоді x²+x+1>0 за будь-якого значення х

 

1)Якщо у=0, x-будь-яке число, то -3y²=0 ⇒ -3y²(x-1+y²)=0

Як вказано раніше, x²+x+1>0

Будь-яке додатнє число більше нуля, отже й

x²+x+1 > -3y²(x-1+y²) ⇒ x²+9y⁴+1 ≥ -3xy²-x+3y²

2) Якщо х=0, y≠0,

З іншого боку, нерівність можна перетворити на таку:

x²+x+3xy² ≥ 3y²-9y⁴-1

х(x+1+3y²) ≥ 3y²-9y⁴-1

Якщо один із множників--нуль, то і весь вираз дорівнює нулю:

Необхідно довести, що

3y²-9y⁴-1 ≤ 0

-(3y²)²+3y²-1 ≤ 0

y⁴≥0

Заміна: 3y²=n,  n>0

-n²+n-1≤ 0

f(n)= -n²+n-1

no= -1/-2 = 1/2= 0,5

f(no)= -0,25+0,5-1 = -0,75

Вітки параболи напрямлені вниз, бо а<0

Отже, -n²+n-1≤ 0  ⇒ 3y²-9y⁴-1≤0

х(x+1+3y²) ≥ 3y²-9y⁴-1    ⇒    x²+9y⁴+1 ≥ -3xy²-x+3y²

3) Якщо х>0, y≠0

x²+x+3xy² ≥ 3y²-9y⁴-1

x²≥0

Як зазначено раніше, 3y²-9y⁴-1<0

Відомо, що x²>0, 3y²>0

Оскільки х--додатнє число, то 3xy²>0

При додаванні додатніх чисел результат теж додатній: x²+x+3xy²>0

Додатнє число завжди більше за від'ємне, тож

x²+x+3xy² > 3y²-9y⁴-1 ⇒ x²+9y⁴+1 ≥ -3xy²-x+3y²

4) Якщо х<0, y≠0

x²+x+3xy² ≥ -9y⁴+3y²-1

Заміна: 3y²=n,  n>0

f(x)=x²+x(1+n)

b=1+n

коефіцієнт b не впливає на зміщення по ординаті, а коефіцієнта с в наданій квадратичній функції немає. Також вітки параболи напрямлені вгору, бо а>0.

Таким чином, x²+x(1+n)>0, а -n²+n-1<0, тому x²+x(1+n)>-n²+n-1<0   ⇒  x²+x+3xy² ≥ -9y⁴+3y²-1   ⇒  x²+9y⁴+1 ≥ -3xy²-x+3y²

Нерівність доведено

4,6(48 оценок)
Открыть все ответы
Ответ:
Карина2203
Карина2203
27.09.2021
Положительные числа - это те числа которые больше нюля. Соотвецтвено отрицательные числа меньше нуля и перед ними ставится минус, и при чтении чисел например -9 читается "минус девять". При сложении отрицательного и положительного, то числа вычитаются и ставится знак большего. При умножении и делении положительных чисел произведение равно положительному числу, а при умножении отричательного и положительного произведение равно отрицательному и при умножении отрицательных чисел произведение равно положительному.
Вот в принципе все. есть вопрося. просто я не знаю что именно тебе писать в конспект
4,8(8 оценок)
Ответ:
avisotska
avisotska
27.09.2021
Область определения - множество, на котором задается функция.

Т.к. все выражение находится под корнем, значит оно должно быть больше нуля и зменатель не должен быть равен нулю, т.е.:

(х^3-4х)/х >=0

(>= означает больше или равен 0)

Нули числителя: х(х^2-4)=0, значит х=0, х=2, х=-2.
Нули знаменателя: х=0

Решаем методом интервалов (чертим координатную прямую; отмечаем точки -2, 0, 2, выбивая 0, и справа налево рассставляем + и - чередуя на каждом интервале).

Т.к. по условию неравенство должно быть больше или равно 0, то берем те интервалы, где у нас +.
Соответсвенно область определения функции: D. [-2;0)U[2;+бесконечно)
4,6(3 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ