1. x² + 3x + 2 = x² + 2x + 1 + x + 1 = (x² + 2x + 1) + (x + 1) = (x + 1)² + (x + 1) = (x + 1)(x + 1 + 1) = (x + 1)(x + 2).
Можно разложить на множители и с теоремы:
ах² + bx + c = a(x - x1)(x - x2), где х1 и х2 - корни квадратного трёхчлена.
2. (с - а)(с + а) - b(b - 2a) = c² - a² - b² + 2ab = c² - (a² + b² - 2ab) = c² - (a - b)² =
применим формулу разности квадратов двух выражений, получим
= (c - (a-b))(c + (a-b)) = (с-а+b)(c+a-b).
3. a² - 3ab + 2b² = a² - 2ab + b² - ab + b² = (a² - 2ab + b²) - (ab - b²) = (a - b)² - b(a - b) = (a - b)(a - b - b) =
= (a - b)(a - 2b).
Находим первую производную функции:
y' = (x-4)² * (2*x-2)+(x-1)² * (2*x-8)
или
y' = 2(x-4)(x-1)(2*x-5)
Приравниваем ее к нулю:
2(x-4)(x-1)(2*x-5) = 0
x₁ = 1
x₂ = 5/2
x₃ = 4
Вычисляем значения функции
f(1) = 0
f(5/2) = 81/16
f(4) = 0
ответ: fmin = 0; fmax = 81/16
Используем достаточное условие экстремума функции одной переменной. Найдем вторую производную:
y'' = 2(x-4)²+2(x-1)²+2(2*x-8)(2*x-2)
или
y'' = 12*x ²- 60*x + 66
Вычисляем:
y''(1) = 18>0 - значит точка x = 1 точка минимума функции.
y''(4) = 18>0 - значит точка x = 4 точка минимума функции.