Задача 1. Из одного города в другой пассажирский поезд приезжает на 45 мин быстрее товарного. Вычисли расстояние между городами, если скорость пассажирского поезда 48 км/ч, а товарного 36 км/ч. Задача 2. Из двух городов, расстояние между которыми 150 км, одновременно навстречу друг другу выехали два автомобиля. Скорость одного автомобиля 65 км/ч, а второго 60 км/ч. Через сколько часов они встретились?
Задача 3. В трех цехах завода всего 685 рабочих. Во втором цехе рабочих в три раза больше, чем в первом, а в третьем — на 15 рабочих меньше, чем во втором цехе. Сколько рабочих в каждом цехе?
Задача 4. Две ремонтные мастерские в течение недели должны отремонтировать по плану 18 моторов. Первая мастерская выполнила план на 120%, а вторая — на 125%, поэтому в течение недели отремонтировали 22 мотора. Какой план по ремонту моторов на неделю имела каждая мастерская?
Задача 5. Цена товара повысилась на 30% и составляет теперь 91 руб. Сколько стоил товар до повышения цены?
Задача 6. Число увеличили на 25%. На сколько процентов надо уменьшить новое число, чтобы получилось исходное?
Задача 7. При увеличении числа на 20% получилось 144. Найти первоначальное значение числа.
Задача 8. При уменьшении числа на 10% получилось 45. Найти первоначальное значение числа.
Задача 9. Цена альбома была снижена сначала на 15%, потом еще на 15 руб. Новая цена альбома после двух снижений 19 руб. Определить его первоначальную цену.
* * * ax²+bx +c=a(x -x₁)(x -x₂) ; 16 - x² > 0 ⇔ x² -16 < 0⇔ (x+4)(x-4)<0 * * *
ООФ (или D(y) ) определяется системой неравенств:
{2x² -5x -3 >0 , {2(x+1/2)(x -3) >0 , { x ∈(-∞; -1/2) ∪(3; ∞) ,
{ 16 -x² >0 ; ⇔ {(x+4)(x-4) < 0 ; ⇔ { x ∈(-4; 4) ;
⇒ x ∈(- 4 ; -1/2) ∪ (3; 4) .
"+" " -" "+"
(-1/2) (3)
"+" " -" "+"
(-4) (4)
Сумма целых чисел из области определения : (-3)+(-2) +(-1) = - 6.
ответ : - 6.