Условию будут удовлетворять числа: 91, 93, 95, 97, 99 (5 шт.) Вероятность: в) Если х=9, то у=9 Если х=8, то у=9 Получаем числа: 99, 89 (2 шт.) Вероятность: г) Если х=1, то у=1; 3 Если х=2, то у=1 Если х=3, то у=1 Числа: 11, 13, 21, 31 (4 шт.) Вероятность:
На 50% содержание синьки в голубой краске снизилось в полтора раза, значит из того же объема синьки можно получить в полтора раза больше краски. Т.е. на 50% больше Пусть количество добавляемой синьки равно x. Пусть общее количество краски, получаемое в первом случае, равно a. Тогда, так как добавляли 15% синьки: х=0,15а Следовательно: а=х/0,15 Пусть общее количество краски, получаемое в первом случае, равно b. Тогда, так как синьки добавляли лишь 10%: х=0,1в Отсюда: в= х/0,1 Необходимо узнать, на сколько увеличился объем голубой краски во втором случае по сравнению с первой, то есть вычислить величину в-а/а Х/0,1 : х/0,15 -1=х/0,1 • 0,15/х -1 =0,15/0,1 -1= 3/2-1=1/2=50
А)5^(х-1)<25
5^(x-1)<5^2
x-1<2
x<3
(-бесконечность ; 3)
Б)3^(-2Х)<√3
3^(-2x)<3^(1/2)
-2x<1/2
x>-1/2 :2
x>-1/4
(-1/4;+бесконечность)