в случае неравномерного движения, когда v≠const
v(t)=ds/dt
ds=v(t)dt
t₂
s=∫ v(t)dt
t₁
нужно найти путь, пройденный точкой за седьмую секунду. это период времени с 6 секунды по 7 секунду. для нашего случая можно записать:
₇ ₇
s=∫(3t²+6t-1)dt =t³+3t²-t | =(7³+3*7²-³+3*6²-6)= 483-318 =165 (м)
⁶ ⁶
ответ: 165 м
подробнее - на -
функцию можно записать так: y = (1 / 3)x - 4x^(- 2) + √x.
воспользовавшись формулами:
(x^n)’ = n* x^(n-1) (производная основной элементарной функции).
(√x)’ = 1 / 2√x (производная основной элементарной функции).
(с * u)’ = с * u’, где с – const (основное правило дифференцирования).
(u + v)’ = u’ + v’ (основное правило дифференцирования).
таким образом, производная нашей функции будет следующая:
y' = (x / 3 – 4 /x ^2 + √x)’ = ((1 / 3)x - 4x^(- 2) + √x)’ = ((1 / 3)x)’ – (4x^(- 2))’ + (√x)’ = (1 / 3 ) – (4 * (- 2) * x^(- 2 - 1)) + (1 / 2√x) = (1 / 3 ) + 8x^(- 3)) + (1 / 2√x) = (1 / 3 ) + (8 / x^3) + (1 / 2√x).
ответ: y' = (1 / 3 ) + (8 / x^3) + (1 / 2√x).
y'=-6x+6
-6x+6=0
-6x=-6
x=1
ставим
y(1)=-3+6+2=5
то есть значения минимальное -oo так как ветви параболы направлены вниз макс значение 5
целых положительных значений от 1 до 5
1+2+3+4+5=15