Рост учеников 8-го класса (в сантиметрах): 167, 159, 159, 158, 148, 150, 150, 165, 167, 148, 156, 155, 153, 153, 151, 151, 148, 160, 152, 152. Заполни таблицу интервалов. Интервал 148- см -153 см 154- см -159 см 160- см 163- см 166- см Частота 5 Накопленная частота
Решение: Обозначим за х-количество изюма; за у- количество груш; за z- количество чернослива Тогда согласно условию задачи: Составим уравнения: у=х+100 z/3=у х+у+z=1000 Решим данную систему уравнений: приводим к тому, чтобы в третьем уравнении была одна переменная: х-известна; у=х+100 z=3у подтавим в третье уравнение, получим; х+х+100+3у=1000 Подставим вместо у, известное нам: у=х+100 Тогда: х+х+100+3*(х+100)=1000 х+х+100+3х+300=1000 5х=600 х=120г (количество изюма) у=120+100=220г (количество груш) z=3*220=660г (количество чернослива)
Натуральные числа разбиваются на два непересекающихся множества вида 2m и 2m+1, где m - натуральное. а) (2m)^2 + 2m + 1 = 4m^2 + 2m + 1 = 2(2m^2+m) + 1, где 2m^2+m натуральное (в силу того, что произведение и сумма натуральных числе всегда натуральна), будет нечётным. (2m+1)^2 + (2m+1) + 1 = 4m^2 + 4m + 1 + 2m + 1 + 1 = 4m^2 + 6m + 2 + 1 = 2(2m^2 + 3m + 1) + 1, где 2m^2 + 3m + 1 натуральное, будет нечётным.
b) Квадрат чётного числа - чётный. Потому число n^2 + n + 1 не может быть квадратом чётного числа. Покажем, что число не может быть и квадратом нечётного числа: n^2 + n + 1 = n^2 + 2n + 1 - n = (n+1)^2 - n Т.е. число n^2 + n + 1 отличается от квадрата (n + 1)^2 на n единиц. Может ли такое число быть квадратом? (n + 1)^2 - n^2 = n^2 + 2n + 1 - n^2 = 2n + 1 > n Не может.
Цельная и стройная запись решения: n^2 < n^2 + n + 1 = (n + 1)^2 - n < (n + 1)^2 Т.к. число n^2 + n + 1 лежит между двумя квадратами последовательных натуральных чисел, само оно не может быть квадратом натурального числа.
Обозначим за х-количество изюма;
за у- количество груш;
за z- количество чернослива
Тогда согласно условию задачи:
Составим уравнения:
у=х+100
z/3=у
х+у+z=1000
Решим данную систему уравнений:
приводим к тому, чтобы в третьем уравнении была одна переменная:
х-известна;
у=х+100
z=3у
подтавим в третье уравнение, получим;
х+х+100+3у=1000
Подставим вместо у, известное нам: у=х+100
Тогда:
х+х+100+3*(х+100)=1000
х+х+100+3х+300=1000
5х=600
х=120г (количество изюма)
у=120+100=220г (количество груш)
z=3*220=660г (количество чернослива)
Проверка: 120+220+660=1000(г)