будем считать, что функция называется f(x)f(x).из условия про нее известно, что f(−4)=2f(−4)=2 (точка a), f(−2)=−4f(−2)=−4 (точка b), f(4)=6f(4)=6 (точка с), а между этими точками (узлами) функция линейна, поэтому для построения графика функции f(x)f(x) нужно узлы соединить отрезками.
функции f(2x)f(2x), f(x/2)f(x/2), f(−0,5x)f(−0,5x), f(−3x)f(−3x), тоже линейны между узлами, поэтому для построения их графиков нужно найти значения в узлах, а потом соединить полученные точки отрезками.
например, f(2x)f(2x), при x=−2x=−2 равно f(−4)=2f(−4)=2, поэтому точка a1(−2,2)a1(−2,2) является узлом функцииf(2x)f(2x). аналогично, f(2x)f(2x), при x=−1x=−1 равно f(−2)=−4f(−2)=−4, поэтому точка b1(−1,−4)b1(−1,−4) - тоже узелf(2x)f(2x), как и точка с1(2,6)с1(2,6). для построения графика функции f(2x)f(2x) нужно пары точек a1,,b1a1,,b1 и b1,,c1b1,,c1 соединить отрезками. для функции f(x/2)f(x/2) аналогично получаем узлы a2(−8,2)a2(−8,2), b2(−4,−4)b2(−4,−4), c2(8,6)c2(8,6) и т.д.
Пусть большее число будет x, числа последовательны,тогда второе число будет( x-1), а третье x-2. Составим уравнение:
x^2-(x-1)*(x-2)=19
x^2-x^4+2x^2+x^2-2=19
x^4-4x^2+21=0
Решим бинарное уравнение: заменим x^2 на у: получим квадратное уравнение: y^2-4y+21=0
Так как |а| =1 , то решаем по теореме Виета:{y1+y2=4
{y1*y2=21>y1=-3,y2=7
Следовательно y=-3(не подходит, так как квадрат числа не может быть отрицательным>x=7-большее число: x-1=7-1=6-второе число, x-2=7-2=5- третье число.
ответ: это числа 5,6 и 7
Объяснение:
f(x) = -4х^(-4)-6х^0,5 +2x + 9
f'(x) = 16х^(-5)-3х^(-1,5) +2=
= -(16/x⁵)-(3/√x³)+2