Имеем:f(x)=2x^4-x+1; f'(x)=(2x^4-x+1)'=8x^3-1
Из уравнения f'(x)=0, или 8x^3-1=0, находим стационарные точки функции f(x):
8x^3=1
x^3=1/8
x=1/2=0.5
В данном случае одна стационарная точка.
В интервал [-1, 1] попадает эта точка 1/2. В ней функция принимает значение f(1/2)=f(0.5)=2*(0.5)^4-0.5+1=5/8=0.625.
В крайних точках интервала [-1,1] имеем: f(-1) = 2*(-1)^4-(-1)+1=4; f(1)=2*1^4-1+1=2.
Из трех значений f(1/2)=f(0.5)=0.625, f(-1) =4, f(1) =2 наименьшим является 0.625, а наибольшим 4.
Поэтому минимальное значение функции f(x)=2x^4-x+1в интервале [-1,1] равно 0.625, максимальное 4.
24 числа можно составить.
Из них на 2 делятся 4
На 4 делятся 2
на 11 делятся 4
Объяснение:
у нас есть 4-значное число. на 1 позицию мы можем поставить 4 числа, на 2-3, на 3-2, на 4-1. Перемножая все варианты получаем 24. Значит всего можно составить 24 числа. Из них на 2 деляться только те у кого а конце 2 или 4 то есть. то есть на 1 позицию можно поставить 2 числа (9 или 7) на вторую 1 число, на последние две тоже по 2 числа, получается 4 числа.
Аналогично для деления на 4 только на последние две позиции можно поставить обязательно 24, получаеся только 2 числа.
И для 11 есть 4 разных числа, где сумма на нечетных позициях = сумме на четных, то есть 4+7 и 2+9
ответ: 0,5-3,5i; 0,5+3,5i;
Объяснение:
(х+1) - (х-2)(х+ 2) =7
(х+1)-(х²-4)=7
х+1-х²+4=7
-х²+х-2=0
х²-х+2=0
D=(-1)²-4·1·2=1-8=-7
√D=√-7=7i
x=(1±7i)/2
x1=0,5-3,5i
x2=0,5+3,5i