Сторона данного треугольника а(3) равна Р:3=6√3:3=2√3 дм
Формула радиуса окружности, описанной около правильного треугольника:
R=a/√3 =>
R=2√3:√3=2 дм
Формула стороны правильного многоугольника через радиус вписанной окружности:
а(n)=2r•tg(180°:n), где r – радиус вписанной окружности, n – число сторон,
Для правильного шестиугольника tg(180°:n)=tg30°=1/√3
a₆=2•2•1/√3=4/√3
P=6•4/√3=8√3 дм
—————
Как вариант: Правильный шестиугольник состоит из 6 равных правильных треугольников.
На рисунке приложения ОН - радиус описанной около правильного треугольника окружности и в то же время высота одного из 6 правильных треугольников, все углы которого 60°; АВ - сторона шестиугольника. Задача решается с т.Пифагора.
Пусть сначала k>0.
Так как первый сомножитель делится на 2, а второй не делится, то 2^k должно быть полным квадратом, т.е. k четно; k=2K. Если первый сомножитель представляется полным квадратом, то и второй сомножитель - полный квадрат.
2^(2K+1)+1=m^2
2^(2K+1)=(m-1)(m+1)
Стало быть, m нечетно; m=2M+1
2^(2K+1)=2M*2(M+1)
2^(2K-1)=M*(M+1)
Последнее равенство при целых M, K выполняется, если:
- 2K-1=0 - не может такого быть
- M=0, тогда 2K-1=0, чего опять быть не может.
Итак, единственный возможный вариант - k=0. Подставим:
2^1+2^0=m^2
m^2=3
Это уравнение не имеет целочисленных корней.
Теперь k<0.
k=-1: 2^(-1)+2^(-1)=m^2
1=m^2
m=+-1
k<-2: первое число - несократимая дробь со знаменателем -(2k+1), второе - дробь со знаменателем (-k). При рассматриваемых k -(2k+1)>-k, так что сумма дробей не является целым числом.
ответ. (k,m)=(-1,+-1).