Выражение (1-cos x)*(1+cosx)/(sin^2*x) sin(2*пи+a)+cos(пи+a)+ sin(-a)+cos(-a) и также решить уравнение 8sinx-cos x=0 3tg^2*x+2tgx-1=0 cos 5x=cos 3x sin 9x-sin x=cos 5x зарание
а) Сумма равна 1, это одна возможная комбинация: {0} {1}, поэтому:
б) Сумма равная 2, это ({0};{2}), можно было бы составить другой комбинацией, но у нас нет двух карточек с единицами, поэтому вероятность так же равна:
в) Сумма равна 3, это ({0};{3}) или ({1};{2}) Вероятность равна: г) Сумма равна 6, это ({0};{6}) ({1};{5}) ({2};{4}) Вероятность равна: д) Сумма равна 9, это: ({0};{9}) ({1};{8}) ({2};{7}) ({3};{6}) ({4};{5}) Вероятность равна: Таким образом, можно заметить, что вероятность зависит только от кол-ва составлений данного числа другими числами с карточек.
(x-3)/х - данная дробь (х-3+1)/(х+1) = (х-2)/(х+1) - новая дробь Так как по условию их разность равна 3/20, то составляем уравнение: (х-2)/(х+1) - (х-3)/ х = 3/20 приводим к общему знаменателю: 20х(х+1) и отбрасываем его, заметив, что х≠0, х≠-1 20х(х-2)-20(х+1)(х-3) = 3х(х+1) 20х²-40х-20х²+40х+60=3х²+3х 3х²+3х-60=0 | :3 х²+х-20=0 Д=1+80=81=9² x(1)=(-1+9)/2=4 => исходная дробь (4-3) / 4 = 1/4 x(2)=(-1-9)/2=-5 => исходная дробь (-5-3) / (-5) = -8/(-5) = 8/5>1 не подходит под условие задачи ответ: 1/4
(1-сosx)(1+cosx)/sin^2x = (1 - cs^2x)/sin^2x = sin^2x/sin^2x = 1
sin(2*pi +a) + cos(pi + a) + sin(-a) + cos(-a) = sina - cosa -sina + cosa = 0
8sinx-cosx = 0 Разделим почленно обе части ур-ия на сosx неравен нулю.
8tgx - 1 = 0, 8tgx = 1, tgx = 1/8 > x = arctg 1/8 + pi *n, где n принадлежит Z
3tg^2 x + 2tgx -1 = 0
заменим tgx = t tg^2 x = t^2 Получим
t^2 + 2t - 1 = 0
D = b^2 - 4ac = 2^2 - 4*1*(-1) = 4 + 4 = 8
t_1 = (-b + VD)/2a = -2 + V8 = -2+2V2
t_2 = (-b-VD)/2a = -2 - V8 = -2 - 2V2
tgx = -2+2V2 x_1 = arctg(-2+2V2) + pi*n, где n принадлежит Z
tgx = -2-2V2 x_2 = arctg(-2-2V2) + pi*n