Ctq(t-π) = -3/4⇒ctqt = -3/4 (πk , k∈Z период функции y =ctqx). ctqt = -3/4 ,π/2 < t < π . 1) cos(3π/2 -t ) = -sint = -1/√(1+ctq²t) = -1/√ (1+(-3/4)²) = - 4/5. ( учтено, если π/2 < t < π ⇒sint >0 ) . 2) cos(π+t) = -cost = -(-1/√(1+tq²t)) = 1/√(1+tq²t) =1/√ (1+(-4/3)²) =3/5 (снова учтено факт: если π/2 < t < π ⇒cost<0 ) .
* * * можно иначе если совместно решаются эти два пункта * * * cos(π+t) = -cost = -sint *ctqt = (4/5)* = (-4/5)*(-3/4) =3/5 используя найденное значения (- sint ) из предыдущего пункта.
Sn=((a1 + an)/2)*n
an=a1+(n-1)d
d=an-a(n-1)= 6-4=2
6=2+(n-1)*2=3
Sn=((2+6)/2)*3=12