Введите задачу...
Основы мат. анализа Примеры
Популярные задачи Основы мат. анализа Найти область определения и область значения y=1/(x^2-9)
y
=
1
x
2
−
9
Приравняем знаменатель в
1
x
2
−
9
к
0
, чтобы выяснить, где не определено данное выражение.
x
2
−
9
=
0
Решим относительно
x
.
Нажмите, чтобы увидеть больше шагов...
x
=
3
,
−
3
Областью определения являются все значения
x
, которые делают выражение определенным.
Запись в виде интервала:
(
−
∞
,
−
3
)
∪
(
−
3
,
3
)
∪
(
3
,
∞
)
Нотация построения множества:
{
x
|
x
≠
3
,
−
3
}
Область значений - это набор всех допустимых значений
y
. Используйте график для определения области значений.
Запись в виде интервала:
(
−
∞
,
−
1
9
]
∪
(
0
,
∞
)
Нотация построения множества:
{
y
∣
∣
∣
y
≤
−
1
9
,
y
>
0
}
Определяем область определения и область значений.
Область определения:
(
−
∞
,
−
3
)
∪
(
−
3
,
3
)
∪
(
3
,
∞
)
,
{
x
|
x
≠
3
,
−
3
}
Область значений:
(
−
∞
,
−
1
9
]
∪
(
0
,
∞
)
,
{
y
∣
∣
∣
y
≤
−
1
9
,
y
>
0
}
ноді подкоренное вираз розкладається на такі множники, коріння з яких витягуються досить легко. У таких випадках вираз можна спростити за до винесення множника з-під знака кореня. Наприклад, '
√12 = √4 • 3 = √4 • √3 = 2√3;
4√1250 = 4√625 • 2 = 4√54 • 2 = 4√54 • 4√2 = 54√2.
Винесення множника за знак кореня дозволяє спростити і більш складні вирази. так,
√18 + √50 -√98 = √9 • 2 + √25 • 2 - √49 • 2 = 3√2 + 5√2- 7√2 = √2;
3√81 - 3√24 + 3√375 = 3√27 • 3 - 3√8 • 3 + 3√125 • 3 = 33√3 -23√3 + 53√3 = 63√3:
Іноді виявляється корисним, навпаки, ввести який-небудь множник під знак кореня.
Нехай, наприклад, потрібно обчислити наближене значення 7√8 з нестачею з точністю до 0,1. Введемо 7 під знак кореня. Для цього зауважимо, що 7 = √49. Тому 7√8 = √49 • √8 = √49 • 8 = √392. Витягуючи корінь з 392 звичайним отримаємо наступне наближене значення цього кореня з нестачею з точністю до 0,1: √392 ≈19,7. Якби ми не ввели 7 під знак кореня, а вирахували б наближене значення √8 з точністю до 0,1 (√8 ≈ 2,8) і отриманий результат помножили на 7, то отримали б 7√8 ≈ 19,6, то є помилилися на 0,1. Цей приклад показує, яку користь може надати введення множника під знак кореня.
Крім того, введення множника під знак кореня призводить іноді до значного спрощення виразу. наприклад
6x-12=0⇒x=2
2x+8=0⇒x=-4
+ _ +
(-4)[2]
x∈(-∞;-4) U [2;∞)
x=-5