Если прямая (графиком является прямая) пересекает ось Х то координата У=0, подставим в уравнение 0=1/9х-4 -1/9х= -4 Х= -4:(-1/4)= -4*(-4)=16 А(16;0) координаты точки пересечения.
У= -2х+6 (4;2) если точка принадлежит графику, то её координаты , при подстановке , обращают уравнение в числовое тождество 2= -2*4+6 2= -2 не принадлежит (-3;0) 0= -2*(-3) +6 0=6+6 0=12 не принадлежит
(3;1) 1= -2*3+6 1=-6+6 1=0 не принадлежит
У=16х-63. К1=16 У= -2х+9. К2= -2 Коэффициенты при Х не равны, значит прямые пересекаются. Координаты точки пересечения общие и мы их можем приравнять 16х-63= -2х+9 16х+2х=9+63 18х=72 Х=4 это координата Х подставим в любое уравнение и найдём координату У
У= -2*4+9= -8+9=1 С (4;1) Координаты точки пересечения.
y = 2x² + 4x - 6 ; a = 2; b = 4; c = -6
Функция квадратичная, график - парабола, ветви направлены вверх (а=2>0). График пересекает ось OY в точке (0; -6), так как с=-6.
Координаты вершины параболы :
Дополнительные точки для построения :
x | -4 -3 -2 1 2
y | 10 0 -6 0 10
a) Нули функции x₁ = -3; x₂ = 1 (точки A и В)
б) y < 0 при x ∈ (-3; 1)
y > 0 при x ∈ (-∞; -3)∪(1; +∞)
в) x ∈ (-∞; -1] - функция убывает
x ∈ [-1; +∞) - функция возрастает
г) наименьшее значение функции в вершине y₀ = -8
д) E (y) = [-8; +∞) - область значений функции
Объяснение: