поскольку дан график производной функции, то смотрим, где он ниже оси ох, при таких значениях х функция убывает, поскольку по графику видно, что функция непрерывна в точках пересечения с осью ох, то и точки пересечения можно включать в промежуток убывания, те же значения х, при которых график находится выше оси ох или пересекает эту ось - это промежутки возрастания.
точки х=-7 и х=4 не включаются в ответы по причине того, что они выколоты и не входят в область определения функции.
поэтому функция убывает при х∈[-5.5; -2.5]
и возрастает при х∈(-7; -5.5] и при х∈[-2.5; 4)
Если речь идет о строгом убывании и возрастании, тогда уместен ответ: функция убывает при х∈(-5.5; -2.5) и возрастает при х∈(-7; -5.5) и при х∈(-2.5; 4)
Замечу, что если промежутков возрастания или убывания несколько, то слово или, а также значок объединения ∪ здесь неуместны, нужно ответ подавать либо через запятую, либо с союзом и.
(x+2)(3-x)=0
-x²+x+6=0
x²-x-6=0 D=26
x₁=3 x₂=-2
S=∫³₋₂(-x₂+x+6)dx=(-x³/3+x²/2+6x) |³₋₂=
-3³/3+3²/2+6*3-((-2)³/3+(-2)²/2+6*(-2))=-9+4¹/₂+18-(8/3+2-12)=
=13¹/₂-(-7¹/₃)=20⁵/₆≈20,8(3) (кв. ед.).
2) y=9-x² y=7-x y=0 s-?
9-x²=7-x
x²-x-2=0 D=9
x₁=2 x₂=-1
9-x²=0
x²=9
x₁=-3 x₂=3
7-x=0
x=7 ⇒
Обшая площадь состоит из четырёх площадей:
9-x² 7-x 9-x² 0
-3-1237
S=∫⁻¹₋₃(9-x²)dx+∫²₋₁(7-x)dx+∫³₂(9-x²)dx+∫⁷₃ (0)dx=
=(9x-x³/3) |⁻¹₋₃+(7x-x²/2) |²₋₁+(9x-x³/3) |³₂=
=(-9+1/3+27-9)+(14-2+7+1/2)+(27-9-18+8/3)=9¹/₃+19¹/₂+2²/₃=31¹/₂.