Сначала узнаем сколько всего чисел, кратных 102 и не превышающих 10000. Для этого достаточно вычислить неполное частное при делении 10000 на 102, это 98.
Перед нами последовательность чисел, каждое из которых делится на 102: {1·102; 2·102; 3·102; ... ; 98·102}. Узнаем, какие из этих чисел кратны 14 и 15.
Заметим, что 102 = 2·3·17, а 14 = 2·7. Числа в нашей последовательности имеют вид 102n. Тогда число такого вида будет делиться на 7, если n кратно 7. Количество таких чисел можно также найти при делении 98 на 7, это 14. Аналогично и для 15 = 3·5 можно получить, что чисел, кратных 15, в нашей последовательности [98/5] = 19 ([x] - целая часть числа x).
Итак, у нас есть 98 чисел кратных 102, из них 14 чисел кратны 14, а 19 чисел кратны 15. Тогда количество чисел, удовлетворяющих условию: 98 - 14 - 19 = 65.
Хотел бы я так сказать, однако всего их не 65 :)
Дело в том, что в нашей последовательности есть числа, которые делятся и на 14, и на 15, а мы это не учли (в нашем ответе числа такого рода вычитались по 2 раза). Это легко исправить, если узнать, сколько чисел делятся и на 14, и на 15.
Число делится и на 14, и на 15 тогда и только тогда, когда оно делится на НОК(14, 15) = 210.
Заметим, что 210 = 2×3×5×7, а 102 = 2·3·17 (как уже выяснялось ранее). Значит, числа вида 120n делятся на 210, если n кратно 35. Количество таких чисел: [98/35] = 2.
Тогда у нас 65+2 = 67 чисел, удовлетворяющих условию. Можно писать ответ.
ответ: 67.
Объяснение:
Уравнение касательной к графику функции f(x) в точке х = х0 имеет следующий вид:
у = f'(x0) * (х - х0) + f(x0).
Найдем производную функции f(x) = x² + 2:
f'(x) = (x² + 2)' = 2x.
Найдем значение производной функции f(x) = x² + 2 в точке х0 = 1:
f'(1) = 2 * 1 = 2.
Найдем значение функции f(x) = x² + 2 в точке х0 = 1:
f(1) = 1² + 2 = 1 + 2 = 3.
Составляем уравнение касательной к графику функции f(x) = x² + 2 в точке х0 = 1:
у = 2 * (х - 1) + 3.
Упрощая данное уравнение, получаем:
у = 2х - 2 + 3;
у = 2х + 1.
ответ: уравнение касательной к графику функции f(x) = x² + 2 в точке х0 = 1: у = 2х + 1.