x2 + 4x + 8 = 0
Найдем дискриминант квадратного уравнения:
D = b2 - 4ac = 42 - 4·1·8 = 16 - 32 = -16
Так как дискриминант меньше нуля, то уравнение не имеет действительных решений.
4x2 - 12x + 9 = 0
Найдем дискриминант квадратного уравнения:
D = b2 - 4ac = (-12)2 - 4·4·9 = 144 - 144 = 0
Так как дискриминант равен нулю то, квадратное уравнение имеет один действительных корень:
x = 122·4 = 1.5
3x2 - 4x - 1 = 0
Найдем дискриминант квадратного уравнения:
D = b2 - 4ac = (-4)2 - 4·3·(-1) = 16 + 12 = 28
Так как дискриминант больше нуля то, квадратное уравнение имеет два действительных корня:
x1 = 4 - √282·3 = 23 - 13√7 ≈ -0.21525043702153024
x2 = 4 + √282·3 = 23 + 13√7 ≈ 1.5485837703548635
2x2 - 9x + 15 = 0 Найдем дискриминант квадратного уравнения: D = b2 - 4ac = (-9)2 - 4·2·15 = 81 - 120 = -39 Так как дискриминант меньше нуля, то уравнение не имеет действительных решений.1 завдання
(a₁ = -3
d = 4)
2 завдання (n= 3 )
Объяснение:
aₙ = a₁ + d(n-1)
a₅ = a₁ + d(5-1)
13 = a₁ + 4d
a₁₅ = a₁ + d(15-1)
53 = a₁ + 14d
a₁ + 4d = 13
a₁ + 14d =53
Система двох лінійних рівнянь з двома невідомими. Розвяжемо методом додавання, для цього помножимо перше рівняння на (-1) і додамо до другого рівняння
-a₁ -4d = -13
a₁ + 14d =53
a₁ + (-a₁) -4d + 14d = -13 + 53
10d = 40
d =40/10
d = 4
Підставимо d у будь-яке з рівняннь для вирахування а
a₁ + 4 * 4 =13
a₁ = 13-16
a₁ = -3
2) Sₙ = ((2a₁ + d(n-1))2)n
Підставимо відомі нам числа
30 = ((12*2 + (-2)*(n -1))2)n
30 = ((24 -2n +2)*n)2
60 = (26-2n)*n
26n - 2n² -60 = 0
-2n² + 26n -60 = 0
n² -13n + 30 =0
D = 13*13 - 4*30
D = 169 - 120
D = 49
√D = 7
n₁ = (13 + 7)/2 = 20/2 = 10 - не підходить
n₂ = (13-7)/2= 6/2 = 3
График функции не проходит через точку А(5;2) .