Рассмотрим функцию Наша функция задана в неявном виде, то частные производные функции вычисляются по формулам:
Вычислим значение частных производных в точке с координатами Запишем уравнение касательной плоскости к поверхности в точке - уравнение касательной в общем виде.
- уравнение касательной плоскости к поверхности в точке с координатами
Уравнение нормали в общем виде: Пользуясь этой формулой, имеем каноническое уравнение нормали к поверхности в точке
- каноническое уравнение нормали к поверхности в точке с координатами
Рассмотрим функцию Наша функция задана в неявном виде, то частные производные функции вычисляются по формулам:
Вычислим значение частных производных в точке с координатами Запишем уравнение касательной плоскости к поверхности в точке - уравнение касательной в общем виде.
- уравнение касательной плоскости к поверхности в точке с координатами
Уравнение нормали в общем виде: Пользуясь этой формулой, имеем каноническое уравнение нормали к поверхности в точке
- каноническое уравнение нормали к поверхности в точке с координатами
Объяснение:
a) 3(2x + 3) - 5(7 – 4x) – 2(5x + 4)=-2
6х+9-35+20х-10х-8=-2
16х-34=-2
16х=-2+34
16х=32
х=2
б) 8(4 - 3x) + 7(x – 3) + 3(9 + 7x)= 10
32-24х+7х-21+27+21х=10
4х+38=10
4х=10-38
4х=-28
х=-7