11sin^2 a + 9cos^2 a + 8sin^4 a + 2cos^4 a = = 9sin^2 a + 9cos^2 a + 2sin^2 a + 6sin^4 a + 2(sin^4 a + 2cos^4 a) = (*) Заметим, что 1) 9sin^2 a + 9cos^2 a = 9(sin^2 a + cos^2 a) = 9 2) sin^4 a + cos^4 a = sin^4 a + 2sin^2 a*cos^2 a + cos^4 a - 2sin^2 a*cos^2 a = = (sin^2 a + cos^2 a)^2 - 2sin^2 a*cos^2 a = 1 - 1/2*(4sin^2 a*cos^2 a) Подставляем (*) = 9 + 2sin^2 a + 6sin^4 a + 2 - 4sin^2 a*cos^2 a = = 11 + 4sin^2 a - 2sin^2 a + 6sin^4 a - 4sin^2 a*cos^2 a = = 11 - 2sin^2 a + 6sin^4 a + 4sin^2 a*(1 - cos^2 a) = = 11 - 2sin^2 a + 6sin^4 a + 4sin^4 a = 11 - 2sin^2 a + 10sin^4 a = = 10(sin^4 a - 2*1/10*sin^2 a + 1/100) - 1/10 + 11 = = 10(sin^2 a - 1/10)^2 + 109/10 Минимальное значение квадрата равно 0, а всего выражения 109/10.
1,(18)=1+0,(18)
0,(18)=x
18,(18)=100x
18+0,(18)=100x
18+x=100x
18=99x
x=18/99
x=2/11
0,(18)=2/11
1,(18)=1+0,(18) =1+2/11=13/11
2,(27)=7+0,(27)
0,(27)=x
27,(27)=100x
27+0,(27)=100x
27+x=100x
27=99x
x=27/99
x=3/11
0,(27)=3/11
1,(27)=1+0,(27) =1+3/11=14/11
0,(13)=x
13,(13)=100x
13+0,(13)=100x
13+x=100x
13=99x
x=13/99
0,(13)=13/99
2,(23)=7+0,(23)
0,(23)=x
23,(23)=100x
23+0,(23)=100x
23+x=100x
23=99x
x=23/99
x=23/99
0,(23)=23/99
2,(23)=2+0,(23) =2+23/99