‥・Здравствуйте, Azma15! ・‥
• Решение:
Решением данного примера является ответ 5+4а³+9ab+7ac²+18a³b+14a³c²-14b+10c².
• Как и почему?
Для того, чтобы нам проверить правильность нашего решения, то мы должны составить план решения, с которого мы будем решать данный пример. Указан он будет ниже:
• 1. Сократить дробь;
• 2. Раскрыть скобки;
• 3. Изменить знаки;
• 4. Проверка ответа;
• 5. Записать ответ.
• Шаг 1: Убрать ненужные скобки.
Для того, чтобы нам сделать 1 шаг, то мы должны раскрыть скобки, то есть, убрать ненужные скобки (5+4а³).
• Шаг 2: Перемножить выражения в скобках.
Для того, чтобы нам выполнить 2 шаг, то мы должны перемножить выражения в скобках чисел (а+2а³)×(9b+7c²).
• Подробные шаги решения:
1. Умножить каждый член их первого выражения в скобках на каждый член из второго выражения в скобках;
2. Вычислить произведение чисел 2 и 9;
3. Вычислить произведения чисел 2 и 7.
• Шаг 3: Изменить знаки каждого члена в скобках.
Для того, чтобы нам решить 3 шаг, то мы должны судить так: когда перед скобками стоит знак «-», то мы должны изменить знак каждого члена в скобках, где есть знак «-».
• Шаг 4: Проверка нашего ответа.
Для того, чтобы нам проверить правильность нашего ответа, то мы должны всё выполнять по-обратному пути, то есть, с конца до начала. Если у нас в конце получился начальный ответ, то это значит, что мы решили данный пример верно. Но, а если, у нас получился какой-то нибудь другой ответ, не начальный, то это значит, что мы допустили ошибку в каком-то месте шага. Нам нужно начать всё сначала.
• Шаг 5: Записать наш конечный ответ.
А теперь, записываем конечный ответ, который у нас получился. Записывать мы будем его так (без чёрных вертикальных линий):
|
| 5+4а³+9ab+7ac²+18a³b+14a³c²-14b+10c²
|
• 〔 ! 〕Замечание: Обратите внимание на то, что в ответе у нас получилось упрощение данного выражения. Точный ответ на данный пример дать НЕЛЬЗЯ.
• Вывод: В таком случае, у нас в ответе получается решение 5+4а³+9ab+7ac²+18a³b+14a³c²-14b+10c².
‥・С уважением, Ваша GraceMiller! :) ・‥
Пусть для определенности в каждом сосуде было по 1 л раствора, в котором x л кислоты. Тогда в 1 сосуде после 1 переливания будет
x*(1 - m)/1 л кислоты. А после 2 переливания будет
x*(1 - m)^2 л кислоты.
Точно также во 2 сосуде после 2 переливания будет
x*(1 - 2m)^2 л кислоты.
И по условию эти объемы относятся друг к другу как 26/16 = 13/8.
x*(1 - m)^2 : [x*(1 - 2m)^2] = 13/8
(1 - m)^2 : (1 - 2m)^2 = 13/8
8(1 - m)^2 = 13(1 - 2m)^2
После раскрытия квадратов получаем:
8m^2 - 16m + 8 = 52m^2 - 52m + 13
44m^2 - 36m + 5 = 0
D/4 = 18^2 - 44*5 = 324 - 220 = 104
m1 = (18 - √104)/44 ~ 0,1773; m2 = (18 + √104)/44 ~ 0,6408
Но во 2 случае объем 2m = 1,2816 > 1 л, поэтому не подходит.
ответ: 0,1773 часть объема раствора
Но мне кажется, что в задаче ошибка, должно быть 25/16.
Тогда решение намного проще.
(1 - m)^2 : (1 - 2m)^2 = 25/16
(1 - m) : (1 - 2m) = 5/4
4(1 - m) = 5(1 - 2m)
4 - 4m = 5 - 10m
6m = 1
m = 1/6 часть объема раствора
Точка, в которой достигается экстремум, называется точкой экстремума. Соответственно, если достигается минимум - точка экстремума называется точкой минимума,
а если максимум — точкой максимума.
А теперь решение:
1)
необходимое условие экстремума функции одной переменной- в этой точке первая производная функции должна обращаться в нуль.
Найдем производную
приравняем ее к нулю
у нас две точки экстремума. Определим теперь какие это точки (максимума или минимума)
- Точка x₀ называется точкой максимума, если существует её окрестность, такая, что для всех значений данной окрестности выполнено неравенство: f(x)≤f(x₀)
- Точка x₀ называется точкой минимума, если существует её окрестность, такая, что для всех значений данной окрестности выполнено неравенство: f(x)≥f(x₀)
Как это выглядит на решении?
нарисуем числовую прямую и отметим на ней точки- экстремумы и проверим знак производной на полученных интервалах:
+ - +
------- 0 ------------ 4 -----------
Значит на промежутке (-оо;0) функция возрастает
на промежутке (0;4) - убывает
на промежутке (4;+оо) - возрастает
Значит х=0 точка максимума
значит х=4 точка минимума
Значение функции в точке х=0
- максимальное значение
значение функции в точке х=4
-минимальное значение
Далее решает по аналогии
2)
найдем точки экстремума
+ - +
----- 0 --------- 3 ------------
на промежутке (-оо;0) и (3;+оо) - возрастает
на промежутке (0;3) убывает
х=0 точка максимума максимальное значение функции
х=3 точка минимума минимальное значение функции
3)
+ - +
------ - 3 ------- 1 ----------
на промежутке (-00;-3) и (1;+оо) возрастает
на промежутке (-3;1) убывает
х= -3 точка максимума
минимальное значение
x=1 точка минимума
минимальное значение
4)
+ - +
------- - 2 -------- 5 --------
на промежутке (-оо;-2) и (5;+оо) возрастает
на промежутке (-2;5) убывает
точка х=-2 точка максимума
максимальное значение
точка х=5 точка минимума
минимальное значение
5)
- +
-------------- 0 ----------------
на промежутке (-оо;0) убывает
на промежутке (0;+оо) возрастает
x=0 точка минимума
минимальное значение функции