Если всё-таки дан периметр прямоугольника, то: периметр прямоугольника P=2(a+b) площадь прямоугольника S=a*b. Составим систему уравнений 2(a+b)=22 a+b=11 a=11-b a*b=24 a*b=24 (11-b)*b=24
11b-b²=24 -b²+11b-24=0 D=11²-4*(-1)*(-24)=121-96=25 b=(-11-5)/(-2)=8 b=(-11+5)/(-2)=3 Решением задачи можно принять любой корень уравнения, допустим примем b=8 см, тогда сторона а=11-8=3 см. Если за решение принять b=3 см, то а=8 см, то есть значения сторон прямоугольника не изменятся.
Если две стороны и угол между ними одного треугольника равны соответственно двум сторонам и углу между ними второго треугольника, то такие треугольники равны.
Дано: ΔАВС и ΔА₁В₁С₁.
АВ = А₁В₁, АС = А₁С₁, ∠А = ∠А₁.
Доказать: ΔАВС = ΔА₁В₁С₁.
Доказательство:
Наложим треугольники друг на друга так, чтобы угол А совпал с углом А₁.
Тогда совпадут и лучи АВ с А₁В₁ и АС с А₁С₁.
Так как АВ = А₁В₁, точки В и В₁ совпадут.
Так как АС = А₁С₁, точки С и С₁ тоже совпадут.
Через две точки можно провести единственную прямую, поэтому совпадут и отрезки ВС и В₁С₁.
Так как треугольники совпали при наложении - они равны.
При доказательстве теоремы используется аксиома: через две точки можно провести единственную прямую.
Если две стороны и угол между ними одного треугольника относительно равныДвум сторонам и углу между ними другого треугольника то такие треугольники равны
Доказательство:
Рассмотрим треугольники АБС и А1 Б1 С1
Угол А Равен углу А1 Следовательно стороны БС и Б1 С1 равны. треугольники АБС и А1 Б1 С1 равны По первому признаку равенства треугольников
Теорема 2 (второй признак равенства треугольников — по стороне и двум прилежащим углам) Если сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника, то такие треугольники равны. Сделайте чертеж, запишите, что дано и что требуется доказать, и докажите наложением треугольников. Теорема 3 (третий признак равенства треугольников — по трем сторонам) Если три стороны одного треугольника соответственно равны трем сторонам другого треугольника, то такие треугольники равны. Запишите сокращенно условие и заключение теоремы.
2. Если сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника, то такие треугольники равны.
3. Если три стороны одного треугольника соответственно равны трём сторонам другого треугольника, то такие треугольники равны.
ОТВЕТ НА ФОТО...........